Randomized incremental construction

Special sampling idea:
- Sample all except one item
- hope final addition makes small or no change

Method:
- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Backwards analysis
- compute expected time to insert $S_{i-1} \rightarrow S_i$
- backwards: time to delete $S_i \rightarrow S_{i-1}$
- conditions on S_i
- but generally analysis doesn’t care what S_i is.

Randomized incremental sorting

Funny implementation of quicksort
- repeated insert of item into so-far-sorted
- each yet-uninserted item points to “destination interval” in current partition
- bidirectional pointers (interval points back to all contained items)
- when insert x to I,
 - splits interval I (x is “pivot” for I)
 - must update all I-pointers to one of two new intervals
 - finding items in I easy (since back pointers)
 - work proportional to size of I
- If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis
- run algorithm backwards
- at each step, choose random element to un-insert
• find expected work
• works because:
 – condition on what first \(i \) objects are
 – which is \(i^{th} \) is random
 – discover didn’t actually matter what first \(i \) items are.

Apply analysis to Sorting:
• at step \(i \), delete random of \(i \) sorted elements
• un-update pointers in adjacent intervals
• each pointer has \(2/i \) chance of being un-updated
• expected work \(O(n/i) \).
• true whichever are \(i \) elements.
• sum over \(i \), get \(O(n \log n) \)
• compare to trouble analyzing insertion
 – large intervals more likely to get new insertion
 – for some prefixes, must do \(n – i \) updates at step \(i \).

Convex Hulls

Define
• assume no 3 points on straight line.
• output:
 – points and edges on hull
 – in counterclockwise order
 – can leave out edges by hacking implementation

\(\Omega(n \log n) \) lower bound via sorting algorithm (RIC):
• random order \(p_i \)
• insert one at a time (to get \(S_i \))
• update \(\text{conv}(S_{i-1}) \rightarrow \text{conv}(S_i) \)
 – new point stretches convex hull
- remove new non-hull points
- revise hull structure

Data structure:
- point p_0 inside hull (how find? centroid of 3 vertices.)
- for each p, edge of $\text{conv}(S_i)$ hit by p_0p
- say p cuts this edge
- To update p_i in $\text{conv}(S_{i-1})$:
 - if p_i inside, discard
 - delete new non hull vertices and edges
 - 2 vertices v_1, v_2 of $\text{conv}(S_{i-1})$ become p_i-neighbors
 - other vertices unchanged.
- To implement:
 - detect changes by moving out from edge cut by p_0p.
 - for each hull edge deleted, must update cut-pointers to $p_i\overrightarrow{v_1}$ or $p_i\overrightarrow{v_2}$

Runtime analysis
- deletion cost of edges:
 - charge to creation cost
 - 2 edges created per step
 - total work $O(n)$
- pointer update cost
 - proportional to number of pointers crossing a deleted cut edge
 - **backwards** analysis
 * run backwards
 * delete random point of S_i (not $\text{conv}(S_i)$) to get S_{i-1}
 * same number of pointers updated
 * expected number $O(n/i)$
 * what $\Pr[\text{update } p]$?
 * $\Pr[\text{delete cut edge of } p]$
 * $\Pr[\text{delete endpoint edge of } p]$
 * $2/i$
 * deduce $O(n \log n)$ runtime
- Book studies 3d convex hull using same idea, time $O(n \log n)$, also gets voronoi diagram and Delauney triangulations.
Linear programming.

- define

- assumptions:
 - nonempty, bounded polyhedron
 - minimizing x_1
 - unique minimum, at a vertex
 - exactly d constraints per vertex

- definitions:
 - hyperplanes H
 - basis $B(H)$
 - optimum $O(H)$

- Simplex
 - exhaustive polytope search:
 - walks on vertices
 - runs in $O(n^{d/2})$ time in theory
 - often great in practice

- polytime algorithms exist, but bit-dependent!

- OPEN: strongly polynomial LP

- goal today: polynomial algorithms for small d

Randomized incremental algorithm

$$T(n) \leq T(n-1,d) + \frac{d}{n}(O(dn) + T(n-1,d-1)) = O(d!n)$$