Admin

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is P=RP?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- \(x_i = 0 \) or \(1 \) for left or right side
- \(E[C] = (1/2)E[C|x_1 = 0] + (1/2)E[C|x_1 = 1] \)
- Thus, either \(E[C|x_1 = 0] \) or \(E[C|x_1 = 1] \geq E[C] \)
- Pick that one, continue
- More general, whole tree of element settings.
 - Let \(C(a) = E[C | a] \).
 - For node \(a \) with children \(b, c \), \(C(b) \) or \(C(c) \geq C(a) \).
- By induction, get to leaf with expected value at least \(E[C] \)
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let \(Q \) be bad event (unbalanced set)
- We know \(\Pr[Q] < 1/n \).
- \(\Pr[Q] = 1/2 \Pr[Q | x_0] + 1/2 \Pr[Q | x_1] \)
- Follows that one of conditional probs. less than \(\Pr[Q] < 1/n \).
- More general, whole tree of element settings.
 - Let \(P(a) = \Pr[Q | a] \).
 - For node \(a \) with children \(b, c \), \(P(b) \) or \(P(c) < P(a) \).
 - \(P(r) < 1 \) sufficient at root \(r \).
 - at leaf \(l \), \(P(l) = 0 \) or \(1 \).
- One big problem: need to compute these probabilities!
Pessimistic Estimators.

[Raghavan Thompson]
Alternative to computing probabilities
three necessary conditions:

- \(\hat{P}(r) < 1 \)
- \(\min\{\hat{P}(b), \hat{P}(c)\} < \hat{P}(a) \)
- \(\hat{P} \) computable

Imply can use \(\hat{P} \) instead of actual.

Our application:

- Let \(Q_i = \Pr[\text{unbalanced set } i] \)
- Let \(\hat{P}(a) = \sum \Pr[Q_b \mid a] \) at tree node \(a \)
 - (union bound)
 - what we actually worked with
- Claim 3 conditions.
 - HW
- Result: deterministic \(O(\sqrt{n \ln n}) \) bias.

more sophisticated pessimistic estimator (based on chernoff) for wiring.

Pairwise Independence
pseudorandom generators.

- Motivation.
- Idea of randomness as (complexity theoretic) resource like space or time.
- sometime full independence unnecessary
- pairwise independent vars.
- generating over \(\mathbb{Z}_p \).
 - Want random numbers in range \([1, \ldots, p]\)
 - pick random \(a, b \)
 - \(i^{th} \) random number \(ai + b \)
 - Works because invertible over field
- If want over nonprime field, use “slightly larger” \(p \)
Max Cut

- Expected value $m/2$
- Requires only pairwise independence
- try all possible seeds

Conserving Random Bits

- Recall Chebyshev inequality
- pairwise sufficient for chebyshev.
- Suppose RP algorithm using n bits.
- What do with $2n$ bits?
- two direct draws: error prob. $1/4$.
- pseudorandom generators gives error prob. $1/t$ for t trials.
- $\mu = t/2$, $\sigma = \sqrt{t}/2$.
- error if no cert, i.e. $Y - E[Y] \geq t/2$, prob. $1/t$.