Admin

Hashing

Dictionaries

- Operations.
 - makeset, insert, delete, find

Model

- keys are integers in \(M = \{1, \ldots, m\} \)
- (so assume machine word size, or “unit time,” is \(\log m \))
- can store in array of size \(M \)
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function \(h \) mapping \(M \) into table of size \(n \ll m \)
- Note some items get mapped to same place: “collision”
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if \(n \) items, then \(m/n \) items to same bucket)
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose “function” that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time \(\Omega(\log n) \).
- “description size” \(\Omega(n \log m) \),
Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

- set S of s items
- If $s = n$, balls in bins
 - $O((\log n)/(\log \log n))$ collisions w.h.p.
 - And matches that somewhere
 - but we care more about average collisions over many operations
 - $C_{ij} = 1$ if i, j collide
 - Time to find i is $\sum_j C_{ij}$
 - expected value $(n - 1)/n \leq 1$

- more generally expected search time for item (present or not): $O(s/n) = O(1)$ if $s = n$

Problem:

- n^m functions (specify one of n places for each of n items)
 - too much space to specify $(m \log n)$,
 - hard to evaluate
- for $O(1)$ search time, need to identify function in $O(1)$ time.
 - so function description must fit in $O(1)$ machine words
 - Assuming $\log m$ bit words
 - So, fixed number of cells can only distinguish poly(m) functions

- This bounds size of hash family we can choose from

Our analysis:

- sloppier constants
- but more intuitive than book

2-universal family: [Carter-Wegman]

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land pairwise independent
- pick p in range $m, \ldots, 2m$ (not random)
- pick random a, b
• map x to $(ax + b \mod p) \mod n$
 – pairwise independent, uniform before $\mod m$
 – So pairwise independent, near-uniform after $\mod m$
 – at most 2 “uniform buckets” to same place

• argument above holds: $O(1)$ expected search time.

• represent with two $O(\log m)$-bit integers: hash family of poly size.

• max load?
 – expected load in a bin is 1
 – so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
 – this bounds expected max-load
 – some item may have bad load, but unlikely to be the requested one
 – can show the max load is probably achieved for some 2-universal families

perfect hash families

• perfect hash function: no collisions

• for any S of $s \leq n$, perfect h in family

• eg, set of all functions

• but hash choice in table: $m^{O(1)}$ size family.

• exists iff $m = 2^{\Omega(n)}$ (probabilistic method) (hard computationally)
 – random function. $\Pr(\text{perfect}) = n!/n^n$
 – So take $n^n/n! \approx e^n$ functions. $\Pr(\text{all bad}) = 1/e$
 – Number of subsets: at most m^n
 – So take $e^n \cdot \ln m^n = ne^n \ln m$ functions. $\Pr(\text{all bad}) \leq 1/m^n$
 – So with nonzero probability, no set has all bad functions (union)
 – number of functions: $ne^n \ln m = m^{O(1)}$ if $m = 2^{\Omega(n)}$

• Too bad: only fit sets of $\log m$ items

• note one word contains n-bits—one per item

• also, hard computationally

Alternative try: use more space:

• How big can s be for random s to n without collisions?
Expected number of collisions is \(E[\sum C_{ij}] = \binom{s}{2}(1/n) \approx s^2/2n \)
- So \(s = \sqrt{n} \) works with prob. 1/2 (markov)
 - Is this best possible?
 - Birthday problem: \((1 - 1/n) \cdots (1 - s/n) \approx e^{-(1/n+2/n+\cdots+s/n)} \approx e^{-s^2/2n}\)
 - So, when \(s = \sqrt{n} \) has \(\Omega(1) \) chance of collision
 - 23 for birthdays

Two level hashing solves problem
 - Hash \(s \) items into \(O(s) \) space 2-universally
 - Build quadratic size hash table on contents of each bucket
 - bound \(\sum b_k^2 = \sum_k(\sum_i[i \in b_k])^2 = \sum C_i + C_{ij} \)
 - expected value \(O(s) \).
 - So try till get (markov)
 - Then build collision-free quadratic tables inside
 - Try till get
 - Polynomial time in \(s \), Las-vegas algorithm
 - Easy: 6s cells
 - Hard: \(s + o(s) \) cells (bit fiddling)

Derandomization
 - Probability 1/2 top-level function works
 - Only \(m^2 \) top-level functions
 - Try them all!
 - Polynomial in \(m \) (not \(n \)), deterministic algorithm

Fingerprinting
Basic idea: compare two things from a big universe \(U \)
 - generally takes \(\log U \), could be huge.
 - Better: randomly map \(U \) to smaller \(V \), compare elements of \(V \).
 - Probability(same) = 1/|V|
• intuition: \(\log V \) bits to compare, error prob. \(1/|V| \)

We work with \textit{fields}

• add, subtract, mult, divide
• 0 and 1 elements
• eg reals, rats, (not ints)
• talk about \(\mathbb{Z}_p \)
• which field often won’t matter.

Verifying matrix multiplications:

• Claim \(AB = C \)
• check by mul: \(n^3 \), or \(n^{2.376} \) with deep math
• Freivald’s \(O(n^2) \).
• Good to apply at end of complex algorithm (check answer)

Freivald’s technique:

• choose random \(r \in \{0, 1\}^n \)
• check \(ABr = Cr \)
• time \(O(n^2) \)
• if \(AB = C \), fine.
• What if \(AB \neq C \)?
 – trouble if \((AB - C)r = 0 \) but \(D = AB - C \neq 0 \)
 – find some nonzero row \((d_1, \ldots, d_n) \)
 – \(\text{wlog } d_1 \neq 0 \)
 – trouble if \(\sum d_ir_i = 0 \)
 – \(\text{ie } r_1 = (\sum_{i>1} d_ir_i)/d_1 \)
 – principle of deferred decisions: choose all \(i \geq 2 \) first
 – then have exactly one error value for \(r_1 \)
 – prob. pick it is at most \(1/2 \)

How improve detection prob?

– \(k \) trials makes \(1/2^k \) failure.
– Or choosing \(r \in [1, s] \) makes \(1/s \).
• Doesn’t just do matrix mul.
 – check any matrix identity claim
 – useful when matrices are “implicit” (e.g. AB)
• We are mapping matrices (n^2 entries) to vectors (n entries).

String matching

Checksums:
• Alice and Bob have bit strings of length n
• Think of n bit integers a, b
• take a prime number p, compare $a \mod p$ and $b \mod p$ with $\log p$ bits.
• trouble if $a = b \pmod p$. How avoid? How likely?
 – $c = a - b$ is n-bit integer.
 – so at most n prime factors.
 – How many prime factors less than k? $\Theta(k/\ln k)$
 – so take $2n^2 \log n$ limit
 – number of primes about n^2
 – So on random one, $1/n$ error prob.
 – $O(\log n)$ bits to send.
 – implement by add/sub, no mul or div!

How find prime?
 – Well, a randomly chosen number is prime with prob. $1/\ln n$,
 – so just try a few.
 – How know its prime? Simple randomized test (later)

Pattern matching in strings
• m-bit pattern
• n-bit string
• work mod prime p of size at most t
• prob. error at particular point most $m/(t/\log t)$
• so pick big t, union bound
• implement by add/sub, no mul or div!
Fingerprints by Polynomials

Good for fingerprinting “composable” data objects.

• check if $P(x)Q(x) = R(x)$
• P and Q of degree n (means R of degree at most $2n$)
• mult in $O(n \log n)$ using FFT
• evaluation at fixed point in $O(n)$ time
• Random test:
 – $S \subseteq F$
 – pick random $r \in S$
 – evaluate $P(r)Q(r) - R(r)$
 – suppose this poly not 0
 – then degree $2n$, so at most $2n$ roots
 – thus, prob (discover nonroot) $|S|/2n$
 – so, eg, sufficient to pick random int in $[0, 4n]$
 – Note: no prime needed (but needed for \mathbb{Z}_p sometimes)

• Again, major benefit if polynomial implicitly specified.

String checksum:

• treat as degree n polynomial
• eval a random $O(\log n)$ bit input,
• prob. get 0 small

Multivariate:

• n variables
• degree of term: sum of vars degrees
• total degree d: max degree of term.
• Schwartz-Zippel: fix $S \subseteq F$ and let each r_i random in S
 \[
 \Pr[Q(r_i) = 0 \mid Q \neq 0] \leq d/|S|
 \]
 Note: no dependence on number of vars!

Proof:
• induction. Base done.

• $Q \neq 0$. So pick some (say) x_1 that affects Q

• write $Q = \sum_{i \leq k} x_i^i Q_i(x_2, \ldots, x_n)$ with $Q_k() \neq 0$ by choice of k

• Q_k has total degree at most $d - k$

• By induction, prob Q_k evals to 0 is at most $(d - k)/|S|$

• suppose it didn’t. Then $q(x) = \sum x_i^i Q(r_2, \ldots, r_n)$ is a nonzero univariate poly.

• by base, prob. eval to 0 is $k/|S|$

• add: get $d/|S|$

• why can we add?

$$\Pr[E_1] = \Pr[E_1 \cap \overline{E_2}] + \Pr[E_1 \cap E_2] \leq \Pr[E_1 | \overline{E_2}] + \Pr[E_2]$$

Small problem:

• degree n poly can generate huge values from small inputs.

• Solution 1:
 – If poly is over Z_p, can do all math mod p
 – Need p exceeding coefficients, degree
 – p need not be random

• Solution 2:
 – Work in Z
 – but all computation mod random q (as in string matching)

Perfect matching

• Define

• Edmonds matrix: variable x_{ij} if edge (u_i, v_j)

• determinant nonzero if PM

• poly nonzero *symbolically*.
 – so apply Schwartz-Zippel
 – Degree is n
 – So number $r \in (1, \ldots, n^2)$ yields 0 with prob. $1/n$
Det may be huge!

- We picked random input r, knew evaled to nonzero but maybe huge number
- How big? About n^r,
- So only $O(n \log n + n \log r)$ prime divisors
- (or, a string of that many bits)
- So compute mod p, where p is $O((n \log n + n \log r)^2)$
- only need $O(\log n + \log \log r)$ bits