Admin:
- Problem Set #1 due in Lecture 6.
- Problem Set #2 out Lecture 6. (new groups for Problem Set #2)

Project Idea:
- AEG: Automatic Exploit Generation CACM 2/14 p.74-84

Discuss:
- (The Tech) Tidbit students/letter/MIT legal aid 2/18/14

Today: Cryptographic hash functions
- definitions
- random oracle model
- desirable properties
- applications
- Keccak (SHA-3) overview
(Cryptographic) Hash functions

A cryptographic hash function h maps bit-strings of arbitrary length to a fixed-length output in an efficient, deterministic, public, "random" manner:

$$h : \{0,1\}^* \rightarrow \{0,1\}^d$$

- all strings of length d
- all strings (of any length ≥ 0)

Sometimes called a "message digest" function.

Typical output lengths are $d = 128, 160, 256, 512$ bits.

No secret key. Anyone can compute h from its public description. Computation is efficient (poly-time).

Examples:

- MD4
- MD5
- SHA-1
- SHA-256
- SHA-512
- SHA-3 (coming!)

<table>
<thead>
<tr>
<th>MD4</th>
<th>MD5</th>
<th>SHA-1</th>
<th>SHA-256</th>
<th>SHA-512</th>
<th>SHA-3 (coming!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>128</td>
<td>160</td>
<td>256</td>
<td>512</td>
<td>$224, 256, 384, 512$</td>
</tr>
</tbody>
</table>
Ideal Hash Function: Random Oracle (RO)

- Theoretical model - not achievable in practice.

Oracle ("in the sky")

- receives inputs x & returns output $h(x)$, for any $x \in \mathbb{Z}_q$ *\text{ and } |h(x)| = d$ bits.

- On input $x \in \mathbb{Z}_q$ *:

 if x not in book:

 - flip coin d times to determine $h(x)$

 - record $(x, h(x))$ in book

 else: return y where (x, y) in book.

- Gives random answer every time, but uses book to record previous answers, so h is deterministic.

![Diagram](https://via.placeholder.com/150)
Many cryptographic schemes are proved secure in ROM ("Random Oracle Model"), which assumes existence of RO. Then RO is replaced by conventional hash function (e.g. SHA-256) in practice, which is hopefully "pseudorandom enough"?!
Hash function desirable properties:

1. "One-way" (pre-image resistance)
 "Infeasible", given $y \in \{0,1\}^d$ to find any x s.t. $h(x) = y$ (x is a "pre-image" of y)

 ![Diagram](image)

 $h: \{0,1\}^* \rightarrow \{0,1\}^d$

 (Note that a "brute-force" approach of trying x's at random requires $\Theta(2^d)$ trials (in ROM).

2. "Collision-resistance" (strong collision resistance)
 "Infeasible" to find x, x' s.t. $x \neq x'$ and $h(x) = h(x')$ (a "collision")

 ![Diagram](image)

 $h(x) = h(x')$

 (In ROM, requires trying about $2^{d/2}$ x's (x, x_2, \ldots) before a pair x_i, x_j colliding is found. (This is the "birthday paradox".)

Actually, the correct definition is that is hard for an adversary, given $y = h(x)$ (where x was picked uniformly at random from $\{0,1\}^n$) to find any x' such that $h(x') = y$.
Note that collisions are unavoidable since
\[|\mathbb{E}_0,1^{2^d}| = \infty \]
\[|\mathbb{E}_1,1^{2^d}| = 2^d \]

Birthday paradox detail:
If we hash \(x_1, x_2, \ldots, x_n \) (distinct strings)
then
\[
E(\#\text{collisions}) = \sum_{i \neq j} \Pr(h(x_i) = h(x_j))
\]
\[
= \binom{n}{2} \cdot 2^{-d} \quad [\text{if } h \text{ "uniform"}]
\]
\[
= \frac{n^2 \cdot 2^{-d}}{2}
\]

This is \(\geq 1 \) when \(n \geq 2^{(d+1)/2} \approx 2^{d/2} \)

The birthday paradox is the reason why hash function outputs are generally twice as big as you might naively expect; you only get 80 bits of security (w.r.t. CR) for a 160-bit output.

With some tricks, memory requirements can be dramatically reduced.
TCR 3 "Weak collision resistance" (target collision resistance, 2nd pre-image resistance)

"Infeasible", given $x \in \mathbb{Z}/13^+$, to find $x' \neq x$ s.t. $h(x) = h(x')$.

Like CR, but one pre-image given & fixed.

(In ROM, can find x' in time $\Theta(2^d)$
(as for OW, since knowing x doesn't help in ROM).

PRF 4 Pseudo-randomness

"h is indistinguishable under black-box access
from a random oracle"

To make this notion workable, really need a
family of hash functions, one of which is chosen at random. A single, fixed, public hash function
is easy to identify...

NM 5 Non-malleability

"Infeasible", given $h(x)$, to produce $h(x')$ where x and x' are "related"
(e.g. $x' = x + 1$).

These are informal definitions...
Theorem: If h is CR, then h is TCR. (But converse doesn't hold.)

Theorem: h is OW \iff h is CR
(norther implication holds)
But if h "compresses", then CR \Rightarrow OW.

Hash function applications

1. Password storage (for login)
 - Store $h(PW)$, not PW, on computer
 - When user logs in, check hash of his PW against table.
 - Disclosure of $h(PW)$ should not reveal PW (or any equivalent pre-image)
 - Need OW

2. File modification detector
 - For each file F, store $h(F)$ securely (e.g. on off-line DVD)
 - Can check if F has been modified by recomputing $h(F)$
 - Need WCR (aka TCR)
 (Adversary wants to change F but not $h(F)$.)
 - Hashes of downloadable software = equivalent problem.