The Menu Bar

- Administrivia:
 - Start w/ final projects – (final proj: was 20% - boost to 35%, 4 labs 55% ?)
 - Agenda:
 - MT: the statistical approach
 - Formalize what we did last time
 - Divide & conquer: 4 steps
 - Noisy channel model
 - Language Model
 - Translation model
 - Scrambling & Fertility: NULL words

Submenu

- The basic idea: moving from Language A to Language B
- The noisy channel model
- Juggling words in translation – bag of words model; divide & translate
- Using n-grams – the Language Model
- The Translation Model
- Estimating parameters from data
- Bootstrapping via EM
- Searching for the best solution

Like our alien system

- We will have two parts:
 1. A bi-lingual dictionary that will tell us what e words go w/ what f words
 2. A shake-n-bake idea of how the words might get scrambled around

We get these from cycling between alignment & word translations – re-estimation loop on which words linked with which other words
'George Bush' model of translation (noisy channel)

- French text f (observed)
- Same French text
- f, e are strings of (french, english) words

IBM “Model 3”

- We’ll follow that paper & 1993 paper on estimating parameters

Summary of components – Model 3

- The language model: $P(e)$
- The translation model for $P(f|e)$
 - Word translation t
 - Distortion (scrambling) d
 - Fertility ϕ
 - (really evil): null words e_0 and f_0
- Maximize (A* search) through product space

OK, what are the other models?

- Model 1 – just t
- Model 2 – just t & simple d
- What are they for?
- As we’ll see – used to pipeline training - get estimates for Model 3
The training data - Hansard

The proposal will not now be implemented.

P(les|the)

Q: What do you think is the biggest error source in Hansard?
 e.g. which P(f|e), or P(?|e)?
 A: How about this - P(? | hear, hear) as in “Hear Hear!”

How to estimate?

- Formalize alignment
- Formalize dictionary in terms of P(f|e)
- Formalize shake-n-bake in terms of P(e)
- Formalize re-estimation in terms of the
 EM Algorithm

 - Give initial estimate (uniform), then up pr’s of
 some associations, lower others

Fundamentals

- The basic equation
 \[\hat{e} = \text{argmax} \ P(e) \ P(f|e) \]

- Language Model Probability Estimation - \(P(e) \)
- Translation Model Probability Estimation - \(P(f|e) \)
- Search Problem - maximizing their product

Finding the pr estimates

- Usual problem: sparse data
 - We cannot create a “sentence dictionary” \(E \leftrightarrow F \)
 - we do not see a sentence even twice, let alone
 once
Let's see what this means

\[P(e) \times P(f|e) \]

Factor 1: Language Model
Factor 2: Translation Model

P(e) – Language model

- Review: it does the job of ordering the English words
- We estimate this from monolingual text
- Just like our alien language bigram data

Bag translation?

- Take sentence, cut into words, put in bag, shake, recover original sentence
- Why? (why: show how it gets order of English language, for P(e) estimate)
- How? Use n-gram model to rank diff arrangements of words:
 - S better than S' if P(S) > P(S')
 - Test: 100 S's, trigram model

Bag results?

- Exact reconstruction (63%)
 - Please give me your response as soon as possible
 - Please give me your response as soon as possible
 - Reconstruction that preserves meaning (20%)
 - Now let me mention some of the disadvantages
 - Let me mention some of the disadvantages
 - Rest – garbage
 - In our organization research has two missions
 - In our missions research organization has two
 - What is time complexity? What K does this use?
Estimating $P(e)$

- IBM used trigrams
- LOTS of them... we’ll see details later
- For now...

P(f|e) - Recall Model 3 story: French mustard

- Words in English replaced by French words, then scrambled
- Let’s review how
- Not word for word replacement (can’t always have same length sentences)

Alignment as the “Translation Model”

0 1 2 3 4 5 6
- e_0 And the program has been implemented

- f_0 Le programme a été mis en application

- Notation:
 $f_0(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6) = [2 3 4 5 6 6]

Example alignment

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

4 parameters for $P(f|e)$

1. Word translation, t
2. Distortion (scrambling), d
3. Fertility, Φ
4. Spurious word toss-in, p
Notation

- e: English sentence
- f: French sentence
- e_i: i^{th} English word
- f_j: j^{th} French word
- l: # of words in English sentence
- m: # words in French sentence
- a: alignment (vector of integers a_1, a_2, \ldots, a_m where each a_j ranges from 0 to l)
- a_j: actual English position connected to by the j^{th} French word in alignment a
- e_{aj}: actual English word connected to by the j^{th} French word in alignment a
- Φ_i: fertility of English word i ($i = 1$ to l) given alignment a

OK, what parameters do we need?

- English sentence $i = 1, 2, \ldots, l$ words
- Look at dependencies in the generative story!
- 3 basic parameters
 - Parameter 1: Which f word to generate depends only on English word e that is doing generating
 - Example: prob(fromage | monkey)
 - Denote these by $t(\tau | e_i)$

Procrustean bed

1. For each word e_i in the English sentence e, $i = 1, 2, \ldots, l$, we choose a fertility $\phi(e_i)$, equal to 0, 1, 2, ..., 25
 - This value is solely dependent on the English word, not other words or the sentence, or the other fertilities
2. For each word e_i, we generate $\phi(e_i)$ French words – not dependent on English context
3. The French words are permuted (‘distorted’) – assigned a position slot (this is the scrambling phase)
 - Call this a distortion parameter $d(i|j)$
 - Note that distortion needn’t be careful – why?

Fertility

- Prob that monkey will produce certain # of French words
- Denoted $n(\Phi | e_i)$ e.g., $n(2|\text{monkey})$
Fertility

• The fertility of word i does not depend on the fertility of previous words.
• Does not always concentrate its probability on events of interest.
• This deficiency is no serious problem.
• It might decrease the probability of all well-formed strings by a constant factor.

Distortion

• Where the target position of the French word is, compared to the English word
• Think of this as distribution of alignment links
• First cut: d(k|i)
• Second cut: distortion depends on English and French sentence lengths (why?)
• So, parameter is: d(k|i, l, m)

To fix the fertility issue...

• Final Procrustean twist
• Add notion of a Null word that can appear before beginning of English & French sentence, e₀ and f₀
• Purpose: account for ‘spurious’ words like function words (á, la, le, the, …)
• Example in this case:

Alignment as the “Translation Model”

0 1 2 3 4 5 6
• e₀ And the program has been implemented
• f₀ Le programme a été mis en application
0 1 2 3 4 5 6 7
• Notation:
 • f(1) Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6)
What about...

- Fertility of null words?
- Do we want $n(2 \mid \text{null})$, etc.?
- Model 3: longer S's have more null words... (!) & uses a single parameter p_1
- So, picture is: after fertilities assigned to all the real English words (excluding null), then will generate (perhaps) z French words
- As we generate each French word, throw in spurious French word with probability p_1
- Finally: what about distortion for null words?

Distortions for null words

- Since we can’t predict them, we generate the French words first, according to fertilities, and then put null words in spots left over
- Example: if there are 3 null generated words, and 3 empty slots, there are 6 ways for putting them in, so the pr for the distortion is $1/6$
- OK, the full monty...

Model 3 in full

1. For each English word e_i, $i=1,\ldots,l$, pick fertility F_i with probability $n(F_i \mid e_i)$
2. Pick the # of spurious French words f_0 generated from $e_0 = \text{null}$
 - Use probability p_1 and the sum of fertilities from Step 1
3. Let m be the sum of all the fertilities, incl null = total length of the output French sentence
4. For each $i=0,1,\ldots,l$ & each $k=1,2,\ldots$, F_i pick French translated words t_{ik} with prob $t(t_{ik} \mid e_i)$
5. For each $i=1,2,\ldots,l$ & each $k=1,2,\ldots$ F_i pick French target positions with prob $d(t \mid i, l, m)$

And 2 more steps

6. [sprinkle jimmies] For each $k=1,2,\ldots$, F_i choose positions in the $F_0 - k + 1$ remaining vacant slots in spots $1,2,\ldots,m$, w/ total prob $(1/F_0!)$
7. Output French sentence with words t_{ik} in the target positions, accdg to the probs $t(t_i \mid e_i)$
Model 3 in full

- Has four parameters: t, n, d, p
- t and n are 2-d tables of floating point numbers (words x fertilities)
- d is 1-d table of numbers
- p is just 1 number

- But... where can we get these numbers?
- How do we compute P(f|e)?

Finding parameter values

- Suppose we had the actual step-by-step transform of English sentences into French...
- We could just count: e.g., if did appeared in 24,000 examples and was deleted 15,000 times, then n(0|did) = 5/8
- Word-word alignments can help us here

Alignment as the “Translation Model”

- 0 1 2 3 4 5 6
 - e_0: And the program has been implemented
 - f_0: Le programme a été mis en application

- Notation:
 - f_0(1) Le(2) programme(3) a(4) été(5) mis(6) en(7) application(6) = [2 3 4 5 6 6 6]

Alignments help get all estimates

- Compute n: count how many times did connects to 0 French words
- Compute t: count how many times f word connects to e word
 - (Note: we assume every French word connects to exactly 1 English word, or null - so never that 2 or more English words jointly give a French word...)
 - Also, if 1 English word connects to 2 French words f_1 and f_2, we don’t know whether they were generated in that order, or the reverse...
OK, so how do we get d & p_1?

- Can also get that from aligned pairs
- Every connection in alignment contributes to a particular parameter like $d(3 | 2, 5, 6)$
- Get counts, dc, & normalize:
 \[d(3 | 2, 5, 6) = \frac{dc(3 | 2, 5, 6)}{\sum dc(j | 2, 5, 6)} \]
- Finally, p_1. From alignments, N words in total french corpus, M generated by null.
- So, after each of the $N - M$ real word cases, a spurious word is generated M times, or
 \[p_1 = \frac{M}{N - M} \]

Mais...

- We need aligned sentences to get parameter values...
- We need parameter values to get aligned sentences.... i.e., we want to maximize
 \[P(a|e,f) \]

Laying an egg: The magic

- You can actually get estimates from non-aligned sentence pairs!!!
- Exactly as you did in your (ahem) alien assignment
- English & French words that co-occur in sentence translations might/might not be translations, but if we have a rough idea about correspondences, we can get idea about distortion probs... e.g., if first english word/first french word correspond, then what about $d(1|1, l, m)$?

comment amorçons-nous?
¿Cómo atamos con correa?
The key: alignments

- Suppose we have a single correct alignment for each sentence pair
- We could collect all parameter counts directly
- But we don’t...
- Suppose we have 2 equally good looking candidates...
- Then we weight the counts from each by 0.5 (a fractional count)
- In general, many more than this… (Neglecting nulls, if e has length ‘l’ and f has length ‘m’, there are 2^m alignments in all)

Example: easy as a, b,…

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

b=blue c= house; x= maison; y=bleue

Can we figure out which alignment works best?

- Idea 1: use alignment weights
- Idea 2: actually use counts as proxies for probabilities

Example

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

Estimate $n_c(1|b) = 0.3 + 0.1 = 0.4$
Estimate $n_c(0|b) = 0.2$
Estimate $n_c(2|b) = 0.4$
Normalise to get fertility: $n(1|b) = 0.4/0.4+0.2+0.2 = 0.4$
Can do the same to get $f(y|b)$
Better to compute alignment probabilities

- Let a be an alignment - just a vector of integers
- We want highest $P(a|e,f)$ (e & f are a particular sentence pair)
- What would make alignment more probable?
 - If we had the translation t parameters, we could judge - a good alignment ought to connect words that are already known to be high prob translations of one another
 - An alignment summarizes (some of) the choices that get made

\[
P(a,f|e)
\]

- BUT We can convert $P(a|e,f)$ to:
 \[
P(a,f|e)/P(f|e)
 \]
 \[
P(a|e,f) = P(a,e,f)/P(e,f) = ...
 \]

How to compute $P(a|f,e)$?

- First term $P(a,f|e)$ can be found from the story of Model 3: start with english string e, blah blah ... get alignment and french string (can have same alignment and two or more different french strings)
- Second term $P(f|e)$ is what we’ve been after...it is all the ways of producing f, over all alignments, so in fact...

All we need to find is

- $P(f|e) = \sum_a P(a,f|e)$
- OK, let's see about this formula
\[P(a,f|e) \]

- \(e \) = English sentence
- \(f \) = French sentence
- \(e_i \) = \(i \)th English word
- \(f_j \) = \(j \)th French word
- \(l \) = \# of words in English sentence
- \(m \) = \# words in French sentence
- \(a \) = alignment (vector of integers \(a_1 a_2 \ldots a_m \) where each \(a_i \) ranges from 0 to \(l \))
- \(a_j \) = actual English position connected to by the \(j \)th French word in alignment \(a \)
- \(e_{aj} \) = actual English word connected to by the \(j \)th French word in alignment \(a \)
- \(\alpha_i \) = fertility of English word \(i \) (\(i = 1 \) to \(l \)) given alignment \(a \)

\[P(a,f|e) = \prod_{i=1}^{l} f_i(a_i, \alpha_i) \cdot \prod_{j=1}^{m} \left(\prod_{i=1}^{l} d(j|a_i, l, m) \right) \]

- word translation values implied by alignment & French string

Adjustments to formula - 4

1. Should only count distortions that involve real English words, not null – eliminate any \(a_j = 0 \) value
2. Need to include probability “costs” for spurious French words – there are \(\Phi_0 \) null French words, and \(m-\Phi_0 \) real French words
 - How many ways to sprinkle in \(\Phi_0 \) “jimmies” – pick \(\Phi_0 \) balls out of urn that has \(m-\Phi_0 \) balls
 - Must multiply these choices by prob costs:
 - We choose to add spurious word \(\Phi_0 \) times, each with probability \(p_1 \), so total pr of this is \(p_1^{\Phi_0} \)
 - We choose to not add spurious word \((m-\Phi_0) \cdot \Phi_0 \) times, so total pr of this factor is \(p_0^{(m-\Phi_0)} \)

Adjustments - last 2

3. Probability Cost for placing spurious French words into target slots – there are \(\Phi_0 \) distortions for the null words, eg, \(d(j|0, l, m) \). Instead we put them in at the end, as the final step of generating the French string
 - There are \(\Phi_0 \) possible orderings, all equally likely, so that adds cost factor of \(1/\Phi_0 ! \)
4. For ‘fertile’ words, e.g., English word \(x \) generates French \(p, q, r \) then there are 6 (in general \(\Phi_1 \)) ways to do this (order is not known)
 - In general, we must add this factor: \(\prod_{i=0}^{\Phi_1} \Phi_1 ! \)
All boiled down to one math formula…

$$P(a,f|e) = \prod_{j} n(f_j | e) * \prod_{i} m(f_i | a, f_i) * \prod_{i} d(j | a, f_i, m) * \left(\prod_{i} \phi_i \right) * \left(\prod_{i} \phi_i \right)$$

Huhn- und Eiproblem?

Parameter values

$$P(a,f|e)$$

$$R(a|f,e)$$

GOAL

EM to the rescue!

What is EM about?

- Learning: improve prob estimates
- Imagine game:
 - I show you an English sentence e
 - I hide a French translation f in my pocket
 - You get $100 to bet on French sentences – how you want (all on one, or pennies on lots)
 - I then show you the French translation – if you bet $100 on it, you get a lot; even if just 10 cents. But if you bet 0, you lose all your money (P(f|e)=0, a mistake!)
- That’s all EM learns to do

A question

- If you’re good at this game, would you be a good translator?
- If you’re a good translator, would you be good at this game?
How?

- Begin with uniform parameter values
 - Eg, if 50,000 French words, then $t(f|e)=1/50000$
 - Every word gets same set of fertilities
 - Set $p_1=0.15$
 - Uniform distortion probs (what will these be?)
- Use this to compute alignments
- Use new alignments to refine parameters
 [Loop until (local) convergence of $P(f|e)$]

How?

- Corpus: just two paired sentences (english, french)
 - b c/x y & b/y Q: is y a translation of c?
 - Assume: Forget about null word, fertility just 1, no distortion;
 - So, just 2 alignments for first pair, and one for the second:

Alignments

```
  b   x   b
  q   x   y
  y   y   y
```

$P(a,f|e) = \prod_{j=1}^m t(f_j|e) \prod_{j=1}^m d(a_j, l, m)$

$P(a|e) = \prod_{j=1}^m t(f_j|e)$

IBM Model 1!

Start to Finish: 4 steps in loop

1. Initial:
 - $t(x|b) = 0.5$
 - $t(y|b) = 0.5$
 - $t(x|c) = 0.5$
 - $t(y|c) = 0.5$

2. $P(a|e)$ normalise

3. $P(a,f|e)$

4. Counts tc

5. normalise to get new t's

Final:
- $t(x|b) = 0.0001$
- $t(y|b) = 0.9999$
- $t(x|c) = 0.9999$
- $t(y|c) = 0.0001$

$P(a,f|e)$
Why does this happen?

- Alignment prob for the crossing case with b connected to y will get boosted.
- Because b is also connected to y in the second sentence pair.
- That will boost t(b|y), and as side effect will also boost t(x|c), because c connects to x in the same crossed case (note how this is like the game we played).
- Boosting t(x|c) means lowering t(y|c) because they must sum to 1.
- So even though y and c co-occur, wiped out...

EM, step by step (hill climbing)

- Step 1 (initial only): set parameter values uniformly
 - t(x|b) = 1/2; t(y|b) = 1/2; t(x|c) = 1/2; t(y|c) = 1/2

Loop

\[
P(a, f|e) = \prod_{j=1}^{m} t(f_j | e_i)
\]

- Step 2: compute \(P(a, f|e)\) for all 3 alignments
 - \(P(a, f|e) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)
 - \(P(a, f|e) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)
 - \(P(a, f|e) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)

- Step 3: normalize \(P(a, f|e)/P(f|e) = P(a|e, f)\)
 - \(P(a|e, f) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)
 - \(P(a|e, f) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)
 - \(P(a|e, f) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\)

Loop to Step 2 – update t via counts tc

- (Ps: what is \(P(a|f,e)\) for 3rd alignment?
- Step 4: collect fractional counts tc: first local to a single alignment:
 - \(t(x|b) = \frac{1}{2}\)
 - \(t(x|c) = \frac{1}{2}\)
 - \(t(y|c) = \frac{1}{2}\)

- Step 5: normalize to get new t values:
 - \(t(x|b) = \frac{1}{2} / 2 = \frac{1}{4}\)
 - \(t(y|b) = \frac{3}{2} / 2 = \frac{3}{4}\)
 - \(t(x|c) = \frac{1}{2} / 1 = \frac{1}{2}\)
 - \(t(y|c) = \frac{1}{2} / 1 = \frac{1}{2}\)
Cook until done...

- Feed these new t values back to Step 2!
 2nd iteration:
 \[t(x | b) = \frac{1}{8} \]
 \[t(y | b) = \frac{7}{8} \]
 \[t(x | c) = \frac{3}{4} \]
 \[t(y | c) = \frac{1}{4} \]

- EM guarantees that this will monotonically increase \(P(a,f|e) \) (but only local maxima)

- EM for Model 3 is exactly like this, but we have different formula for \(P(a,f|e) \) & we collect fractional counts for n, p, d from the alignments

Exercise...

- The blue house / la maison bleue
- The house / la maison
- 6 alignments for sentence 1, two for sentence 2
- Start w/ all t's set to \(\frac{1}{3} \) – i.e., \(t(la|the)=\frac{1}{3} \)

How good is Model 3?

- Remember gambler?
- How good is Model 3 at this game?

- Distortion – poor description of word order differences – bets on lots of ungrammatical French sentences
- Nothing stops us from choosing target position

Consider

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

ALL map to position 5
EM not globally optimal
- Initial condition: might take 1st two words & always link them, then distortion cost small, word-translation costs high
- EM doesn’t know about linguistics!
- How to fix?
- More seriously: look at iteration
- Over every alignment: $P(f|e) = \sum_a P(a, f|e)$
- 20 words by 20 words – gulp
- Solution: iterate only over good-looking ones...
 - How to find best 100 w/o enumerating them all?

More seriously: look at iteration
- Over every alignment: $P(f|e) = \sum_a P(a, f|e)$
- 20 words by 20 words – gulp
- Solution: iterate only over good-looking ones...
 - How to find best 100 w/o enumerating them all?

Can use Model 1 counts from all alignments w/o enumerating them all!

Model 1 – easy to figure out what best alignment is - quadratic time in l, m

In fact, it has a single local maximum, since the objective function is quadratic (won’t prove this here...)

Use this to kick-off Model 3

Formula about Model 1

$$\sum_a P(a, f|e) = \sum_a \prod_{j=1}^{m} t(f_j | e_a) \prod_{j=1}^{m} t(f_j | e_c)$$

Use factoring to do this
Last expression only takes $l+m$ operations

el kahuna grande

Model 1 iteration (over all alignments)
Revised t values
Uniform n, d, p values
Model 3, start w/ alignment from Model 1
Revised t, n, d, p values
Local jiggle about alignment
New E’s
Use plain p’s, t, n, d, p
New F’s
Now to the next step...

- Got our P(e), P(f,e)

- To translate given French sentence f, we still need to find the English sentence e that maximizes the product

- Can't search all of these!!!

Still need

- Unknown words – names & technical terms: use phonetics

- Robert Berwick,... (what does Babelfish do?)

¿Tan qué?

- What did IBM actually do? (datawise)
- Remember the British unemployed?

IBM's actual work

- (Remember the British unemployed)
- 1,778,620 translation pairs
- 28,850,104 French words
- T array has 2,437,020,096 entries...
- Final English, French dictionaries have 42,006 and 58,016 words
- In all, about 100mb of storage needed to calculate the pr's
<table>
<thead>
<tr>
<th>Iteration</th>
<th>In</th>
<th>Out</th>
<th>Surviving pr's</th>
<th>Alignments</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12,017,609</td>
<td>71,550.56</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>12,160,475</td>
<td>202.99</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>9,403,220</td>
<td>89.41</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>8,373,172</td>
<td>61.59</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5,303,312</td>
<td>49.77</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4,397,172</td>
<td>46.36</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3,841,470</td>
<td>45.15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td>2,057,033</td>
<td>124.28</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>5</td>
<td>1,856,665</td>
<td>59.17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
<td>1,763,965</td>
<td>32.84</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>5</td>
<td>1,703,393</td>
<td>31.29</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>5</td>
<td>1,658,364</td>
<td>30.85</td>
<td></td>
</tr>
</tbody>
</table>

Should

| f | t(f|e) | phi | t(phi|e) |
|-----------|------|-----|-------|
| devrait | 0.330| 1 | 0.649 |
| Devraient | 0.123| 0 | 0.336 |
| devreions | 0.109| 2 | 0.014 |
| faudrait | 0.073| | |
| faut | 0.058| | |
| doit | 0.058| | |
| aurait | 0.041| | |
| doivent | 0.024| | |
| devons | 0.017| | |
| devrais | 0.013| | |

What about...

- In French, what is worth saying is worth saying in many different ways.
- He is nodding:
 - Il fait signe qui oui
 - Il fait un signe de la tête
 - Il fait un signe de tête affirmatif
 - Il hoche la tête affirmativement
Nodding hill...

\[
\begin{array}{cccc}
\text{signe} & 0.164 & 4 & 0.342 \\
\text{la} & 0.123 & 3 & 0.203 \\
\text{oui} & 0.086 & 1 & 0.163 \\
\text{fais} & 0.073 & 0 & 0.023 \\
\text{hochet} & 0.054 \\
\text{fatare} & 0.048 \\
\text{me} & 0.024 \\
\text{approuve} & 0.019 \\
\text{quis} & 0.019 \\
\text{faites} & 0.011 \\
\end{array}
\]

Best of 1.9 \times 10^6 alignments!

- Always works hard – even if the input sentence is one of the training examples
- Ignores morphology – so what happens?
- Ignores phrasal chunks – can we include this? (Do we?)
- What next? Alternative histories...
- Can we include syntax and semantics?
- (why not?)