Question 1 (25 points) Figure 1 shows the perceptron algorithm, as described in lecture 20. Now say we alter the parameter update step to be the following:

\[
\begin{align*}
 \text{If } & (z_i \neq y_i) \\
 \mathcal{A} = \{ z : z \in \text{GEN}(x_i), z \neq y_i, W \cdot \Phi(x_i, z) \geq W \cdot \Phi(x_i, y_i) \} \\
 n = |\mathcal{A}| \\
 W = W + \Phi(x_i, y_i) - \frac{1}{n} \sum_{z \in \mathcal{A}} \Phi(x_i, z)
\end{align*}
\]

Show that the modified algorithm makes at most \(\frac{R^2}{\delta} \) updates before convergence, where \(R \) and \(\delta \) are as defined in the lecture (i.e., show that the convergence theorem that we described in lecture also holds for this algorithm). Hint: the proof is quite similar to the proof of convergence given in lecture.

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>Training set ((x_i, y_i)) for (i = 1 \ldots n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization:</td>
<td>(W = 0)</td>
</tr>
<tr>
<td>Define:</td>
<td>(F(x) = \arg\max_{y \in \text{GEN}(x)} \Phi(x, y) \cdot W)</td>
</tr>
</tbody>
</table>
| Algorithm: | For \(t = 1 \ldots T, i = 1 \ldots n\) \\
| & \(z_i = F(x_i)\) \\
| & If \((z_i \neq y_i)\) \(W = W + \Phi(x_i, y_i) - \Phi(x_i, z_i)\) |
| Output: | Parameters \(W\) |

Figure 1: The perceptron algorithm, as introduced in lecture 20.

Question 2 (25 points) In lecture 17 we defined transduction PCFGs. For example, a transduction PCFG would assign a probability to a structure such as the following (see the lecture notes for more details):
The above structure can be considered to represent an English string \(e \), an English parse tree \(E \), a French string \(f \), and a French parse tree \(F \), in this case:

```
S
  NP VP VP NP
  D N Vi Vi D N
  the man sleeps asleeps
```

Say \(P(e, E, f, F) \) is the probability assigned to an \(e, E, f, F \) tuple by the transduction PCFG. Give pseudo-code for an algorithm that takes an \(e, E \) pair as input, and returns

\[
\arg \max_{f,F} P(e, E, f, F)
\]

Question 3 (90 points)

In this question you will implement code for IBM translation model 1. The files `corpus.en` and `corpus.de` have English and German sentences respectively, where the \(i \)’th sentence in the English file is a translation of the \(i \)’th sentence in the German file.

Implement a version of IBM model 1, which takes `corpus.en` and `corpus.de` as input. Your implementation should have the following features:

- The parameters of the model are \(T(f|e) \), where \(f \) is a German word, and \(e \) is an English word or the special symbol NULL. You should only store parameters of the form \(T(f|e) \) for \((f,e)\) pairs which are seen somewhere in aligned sentences in the corpus.
- In the initialization step, you should set \(T(f|e) = \frac{1}{n(e)} \) where \(n(e) \) is the number of different German words seen in German sentences aligned to English sentences that contain the word \(e \).
- Your code should run 10 iterations of the EM algorithm to re-estimate the \(T(f|e) \) parameters.

Note: your code should have the following functionality. It should be able to read in a file, line by line, where each line has an English word, for example

```
dog
eats
man
...```

For each line it should return a list of German words, together with probabilities \( T(f|e) \). The list of German words should contain all words for which \( T(f|e) > 0 \).