The most important NP-complete (logic) problem family!

SAT = Satisfiability:
- given a Boolean formula (AND, OR, NOT) over \(n \) variables \(x_1, x_2, \ldots, x_n \)
- can you set \(x_i \)'s to make formula true?

\[\text{Circuit SAT: formula expressed as circuit of gates} \]

\[
\begin{align*}
&x_1 \\
&x_2 \\
&x_3 \\
\end{align*}
\]

\[\text{(allows re-use)} \]

CNF SAT:
formula = AND of clauses
clause = OR of literals
literal \(\in \{ x_i, \text{NOT } x_i \} \)

- can view as bipartite graph: variables vs. clauses, positive/negative edges

3SAT:
clause = OR of 3 literals
i.e. clause degrees = 3 (but allow repeats)

3SAT-3: each variable occurs in \(\leq 3 \) clauses

- E3SAT-4 but E3SAT-3 \(\notin \mathbf{P} \)
- exactly 3 distinct literals per clause

Monotone 3SAT:
each clause all positive or all negative
Beware polynomial-time variants!

2SAT: clause = OR of 2 literals
- \(\text{polynomial} \)
- \(x \lor y \equiv \text{NOT } x \Rightarrow y \) (\(\equiv \) NOT \(y \Rightarrow x \))
- guess \(x_i \) and follow all implication chains to check ok

But...

Max 2SAT: set variables to maximize # true clauses
- NP-complete [Garey, Johnson, Stockmeyer 1976]

Horn SAT: each clause has \(\leq 1 \) positive literal
- \(\text{NOT } x \lor \text{NOT } y \lor \text{NOT } z \lor w \)
- \(\equiv \text{NOT } (x \land y \land z) \lor w \)
- \(\equiv (x \land y \land z) \Rightarrow w \)
- \(\Rightarrow \text{polynomial like 2SAT} \) [Horn 1951]

Dual-Horn SAT: each clause has \(\leq 1 \) negative literal
- "weakly positive satisfiability" [Schaefer 1978]
- negate all variables \(\Rightarrow \) Horn SAT
- \(\Rightarrow \text{polynomial} \)

DNF SAT: formula = OR of clauses
- clause = AND of literals
- \(\Rightarrow \) satisfiable \(\iff \geq 1 \) clause

\(\downarrow \) **Disjunctive Normal Form**
Alternative clauses for 3SAT:

1-in-3SAT = exactly-1 3SAT \[\text{[Schaefer 1978]}\]
- clause = exactly 1 of 3 literals is true
 \(\Rightarrow 2\) false \(\sim\) TFF, FTF, FFT

Positive 1-in-3SAT: no negations – all literals positive
But... sometimes called “monotone”

Positive not-exactly-1 3SAT: \[\text{[Schaefer 1978]}\]
- clause = 0, 2, or 3 variables are true
 i.e. \(x_i \Rightarrow (x_j \text{ or } x_k) \Rightarrow \text{Dual Horn}\)
- also require \(x_1 = \text{TRUE}\) (else set all \(x_i = \text{FALSE}\))
 & \(x_2 = \text{FALSE}\) (or allow \(|\text{clause}| \leq 3\))
- polynomial

NAE 3SAT = not-all-equal 3SAT \[\text{[Schaefer 1978]}\]
- clause = 3 literals not all the same value
 (forbid FFF \& TTT \(\Rightarrow 1\) or 2 true, 2 or 1 false
 \(\sim\) whereas 3SAT forbids just FFF)
- nice symmetry between TRUE \& FALSE

Positive NAE 3SAT: no negations – all literals positive
Schaefer’s Dichotomy:
- formula = AND of clauses
- general clause = relation on variables
 - assume in CNF (unique if minimal)
 ⇒ AND of subclauses
⇒ SAT is polynomial if either:
 - setting all variables true or all variables false satisfies all relations
 - subclauses are all Horn or all Dual Horn
 - relations are all 2-CNF (subclause sizes ≤ 2)
 - every relation can be expressed as a system of linear equations over \(\mathbb{Z}_2 \):
 \[
 \lor \oplus \land \, x_i \oplus x_j \oplus x_k \oplus x_l = 0 \text{ or } 1
 \]
 "XOR SAT" \(\Leftrightarrow \text{XOR} \) \(\Leftrightarrow \) Gaussian elimination
& otherwise, SAT is NP-complete!

Another hard version of SAT – seldom used?

2-colorable perfect matching:
- given a planar 3-regular graph
- 2-color the vertices such that every vertex has exactly 1 same-colored neighbor
- special case of 2-in-4-SAT (planarity & 3-regular left as exercise)
Pushing blocks:
- 1x1 robot navigating grid of blocks
- goal: get robot from start to target

- Push-k: robot can push up to k blocks at once
- Push-∞: infinite strength
- PushPush: blocks slide until they hit something
- PushPushPush: blocks slide other blocks in chain reaction, up to strength k
- Push---F: some blocks are fixed
- Push---X: robot path cannot self-intersect (tiles disappear after traversal)

- Sokoban = Push-1F but with goal of filling target squares with blocks
Push-$*$: reduction from 3SAT \[\text{[Hoffmann 2000]}\]
- variable: push right in x_i or \overline{x}_i row
 \rightarrow fill in row of connection gadget
- connection: 1 free cell per occurrence of literal
- bridge: move up & block off leftward path
- clause: need a free spot below to traverse

\underline{Push-Push-1 in 3D}: reduction from 3SAT
\[\text{[O'Rourke & Smith Problem Solving Group 1999]}\]

\underline{(Push)Push-1 (in 2D): } reduction from 3SAT
\[\text{[Demaine, Demaine, O'Rourke 2000]}\]
- clause gadget: block other, lock gadget
- XOR crossover: $N \rightarrow S$ xor $W \rightarrow E$
- unidir. crossover: optional $N \rightarrow S$, then $W \rightarrow E