2 ways to represent variables in 3SAT:

1. Dual-rail logic:
 - Variable gadget forces exclusive OR of 2 "semi-wires" (true & false)
 - Semiwire connects to clauses \(\wedge \) variable (active only when chosen)
 (e.g. Nintendo, pushing blocks, Phutball - most 3SAT reductions we've seen)

2. Binary logic: (not just Circuit SAT)
 - Wire gadget has 2 (types of) solutions
 - Split gadget to make copies of wire (e.g. flat-foldable crease patterns)

 - Circuit SAT also needs terminator gadget to start a variable wire

\[\Rightarrow \text{in both cases, may need} \]
 - Turn gadget to route (semi)wires
 - Crossover gadget to cross (semi)wires
Akari/Light Up: [Nikoli 2001]
- given square grid with some obstacles
- some obstacles have a number
 → how many (0-4) edge-adjacent lights
- light illuminates like rook, up to obstacles
- goal: place lights in blanks so that
 - black space lit
 - no lights light each other
 - satisfy numbers

NP-complete by reduction from Circuit SAT: [McPhail 2005]
- wire, turn gadgets
- split/negation gadget
 → split & negation gadgets (via terminators)
- OR/XNOR gate
- crossover gadget: just XORs!
Minesweeper: given square grid of numbers & unknowns & possibly mines

Consistency: does there exist a solution?
- e.g. see whether mine at \(x \) is consistent with (consistent) info so far: if not, play \(x \)
 \(\rightarrow \) special case of interest

NP-complete by reduction from Circuit SAT
 [Kaye 2000]
 - wire, terminator
 - split/NOT/turn
 - phase changer (shift by 2) via 2 NOTs
 - AND
 - crossover gadget: just use NANDs!
 [Goldschläger 1977]
Winning: can I force a win? (no guessing)
i.e. figure out all squares? [Hearn 2006]

Inference: can I figure out any squares? [Scott, Stege, van Rooij 2011]

$\in \text{CoNP}$: proof of NO = 2 differing solutions

\text{CoNP-complete} by reduction from \text{Circuit UNSAT}:

\[\neg \exists x_1 \cdots x_n \text{ s.t. } f(x) \]
\[\equiv \forall x_1 \cdots x_n : \neg f(x) \]

- wire, turn, terminator
- NOT, OR, shifter
- split
- crossover: just use NORs!

- special care to ensure equal # mines in all cases (# mines part of puzzle) & ports aligned (middle of 3)

- unsatisfiable \iff output forced to be F

\text{Planar Circuit SAT}: given noncrossing circuit

- only NAND or - only NOR (\& splitters)
Candy Crush / Bejeweled

- given square grid of colors (among 6)
- move = swap two edge-adjacent squares
- whenever 3 equal colors in a row/column: 3 squares disappear & columns fall

(\textit{”pop”})

NP-complete to get \(p \) points with \(k \) moves by reduction from 3SAT

... in model where pops happen sequentially bottom to top

Claim: worse to trigger wire (even \(x \& \bar{x} \)) directly

- only use 5 colors

[Walsh 2014]
NP-complete with simultaneous pops by reduction from 1-in-3SAT
- works for many goals:
 - p points in k moves
 - p points
 - pop p gems
 - p moves
 - pop a specific gem

[Guàlà, Leucci, Natale 2014]