Parameter $k = \text{function: instance } \rightarrow \mathbb{N}$
- usually one of the numbers in instance
- sometimes hard to compute e.g. OPT

Downey & Fellows 1999

Parameterized problem = decision problem + parameter
- e.g. (k)-Vertex Cover: is there a vertex cover of $\leq k$?
 - k is the natural parameter: comparing with OPT
- e.g. Vertex Cover with respect to OPT (Vertex Cover)
 - similar but k not given
 - for $k=0,1,2,...$: run k-Vertex Cover
- e.g. Vertex Cover w.r.t. crossing number

$XP = \{ \text{parameterized problems solvable in } n^{f(k)} \text{ time} \}$

Fixed-parameter tractable (FPT)
- $\{ \text{parameterized problems solvable in } f(k) \cdot n^{O(1)} \text{ time} \}$
- $\{ \text{parameterized problems solvable in } f(k) + n^{O(1)} \text{ time} \}$
- motivation: confine exponential to parameter k which may be \ll problem size n

Example: (k)-Vertex Cover
- $\in XP$: guess k vertices, test coverage $|V|^k \cdot |E|$
- $\in FPT$: take edge, guess endpoint, delete, repeat 2^k "bounded search tree technique" depth $\leq k$
EPTAS ∈ PTAS with running time $f(1/\varepsilon) \cdot n^{O(1)}$
- i.e. FPT w.r.t. $1/\varepsilon$
 \[\Rightarrow \text{FPT w.r.t. natural parameter } k \ (\Rightarrow \text{w.r.t. OPT}) \]
- $\not\in$ FPT $\Rightarrow \in$ EPTAS

Parameterized reduction: $(A, k) \rightarrow (B, k')$
- instance x of A \Rightarrow instance $x' = f(x)$ of B
- $f(k(x)) \cdot |x|^{O(1)}$ time $\Rightarrow |x'| \leq f(k(x)) \cdot |x|^{O(1)}$
- answer preserving: $x \text{ YES for } A \iff x' \text{ YES for } B$
 \[\forall x \left\{ \text{(just like NP/Karp reductions)} \right\} \]
- parameter preserving: $k'(x') \leq g(k(x))$
 for some $g: \mathbb{N} \rightarrow \mathbb{N}$
- $B \in \text{FPT} \Rightarrow A \in \text{FPT}$

Nonexample: independent set \rightarrow vertex cover
$(G, k) \rightarrow (G, n-k)$
- preserves answer but not parameter
- indeed, vertex cover \in FPT
 but independent set is W[1]-hard
 \[\Rightarrow \not\in \text{FPT unless } \text{FPT}=\text{W[1]} \]

Example: independent set \rightarrow clique
$(G, k) \Rightarrow (\bar{G}, k)$ (or vice versa)
Canonical hard problem for \(W[1] \): (analogy to \(NP \))

- \(k \)-step nondeterministic Turing machine
- given nondeterministic Turing machine code, state, finger to \(k \)-cell memory?
 - \(O(n) \) lines; \(O(n) \) options; \(O(n) \) states
 - (guess can have \(n \) choices/branches)
 - does some choice sequence finish in \(k \) steps?

Reduction to Independent Set:
- \(k^2 \) cliques, \(k' = k^2 \) \(\implies \) 1 node per clique
- clique \((i,j)\) represents memory cell \(i \) at time \(j \) (\(n \) choices) + state of machine (e.g. PC = which of \(n \) instructions next)
- add edges to forbid certain transitions \(j \to j' \); omit edges for allowed nondet. trans.

Reduction from Independent Set: \(k' = \Theta(k^2) \)
- guess \(k \) vertices \(\Theta(k) \)
- for each pair of these vertices: \(\Theta(k^2) \)
 - check no edge (lookup table in code)

\(\implies \) both \(W[1] \)-complete
Clique in regular graphs: reduction from Clique
- $\Delta = \text{max. degree}$
- Δ copies of graph
- vertex v of degree $d \Rightarrow v_1, v_2, \ldots, v_\Delta$ copies
- add $\Delta - d$ vertices
- biclique between $\&$
 $\Rightarrow \Delta$-regular
- add no cliques (≥ 3):
 new vertices in no Δ

Independent set in regular graphs - just take complement

Partial vertex cover:
are there k vertices that cover l edges?
- FPT w.r.t. l
- W[1]-complete w.r.t. k

Reduction from Independent set in regular graphs:
- $k' = \Delta k$

Multicolored clique: --- like (Numerical) 3DM
- given graph & vertex k-coloring
- find k vertices, one of each color, that form a k-clique
- \(W[1] \)-complete
 [Pietrzak - JCSS 2003]
 [Fellows, Hermelin, Rosamond, Vialette - TCS 2009]

Reduction from Clique:
- vertex \(v \rightarrow k \) copies \(v_1, v_2, \ldots, v_k \)
 colors: 1, 2, \ldots, k
- edge \((v_i, w)\rightarrow \text{edges} \ (v_i, w_j) \ (i\neq j)\)
- \(k' = k \)
- k-clique \(\iff \) k-colored k-clique

Reduction to Clique:
- nothing: coloring \(\Rightarrow \) all cliques are multicolored

Multicolored independent set --- just take complement
Shortest common supersequence:
- given \(k \) strings over alphabet \(\Sigma \) & number \(l \)
- is there a common supersequence of length \(l \)
- \(\mathcal{W}[1] \)-hard w.r.t. \(k \) for \(|\Sigma| = 2 \) [Pietrzak-JCSS2003]
- reduction from Multicolored Clique

Reduces to restricted form where input strings
never repeat character twice in a row parameterized by \(k \) & \(\Sigma \)
- add new symbol \(s_i \) after every character in string \(i \) \(\Rightarrow \) no repeats
- \(k' = k \)
- \(|\Sigma'| = |\Sigma| + k \)
- \(l' = l + \) total length of input strings

Reduces to Flood-It on trees
w.r.t. \# colors \((|\Sigma|)\) & \# leaves \((k)\)
Dominating set: (based on Cygan et al. book 2015)

Reduction from Multicolored independent set:
- vertex \(\rightarrow\) vertex
- connect each color class in clique
- also add 2 dummy vertices to each clique
- \(k' = k\) \(\Rightarrow\) dominating set chooses one vertex from each clique, representing one vertex of each color in ind. set
- for each edge \((v, w)\):
 - add vertex connected to all vertices in color classes of \(v\ & w\), except \(v\ & w\)
 \(\Rightarrow\) dominated \(\iff\) \(v\ & w\) not both chosen (i.e. independent set)

\(\Rightarrow\) W[1]-hard
- W[2]-complete in fact
\(\Downarrow\) \(\notin\) FPT unless FPT = W[2] (weaker assumption)

Reduction to Set Cover: same as L11
- vertex \(v\) \(\rightarrow\) set \(N(v) \cup \exists u \in S\) \(\quad - k' = k\)
Weighted Circuit SAT (Circuit k-ones)
- given acyclic Boolean circuit & parameter k
- can we set k inputs to 1 to get output = 1?

\[W[\mathcal{P}] = \{ \text{parameterized problems reducible to Weighted Circuit SAT} \} \]
- depth = longest input \to output path
- weff = max \# big gates on input \to output path
 \(\leq \) not \(O(1) \) inputs; e.g. \(\geq 3 \) inputs

\[W[t] = \{ \text{parameterized problems reducible to } O(1) \text{-depth weff} - t \text{ Weighted Circuit SAT} \} = \{ \text{parameterized problems reducible to depth} - t \text{ output}=\text{AND Weighted Circuit SAT} \} \]
 [Buss & Islam - TCS 2006]

\[W[*] = W[O(1)] \]

\[W[1] \text{-complete:} \]
- weighted \(O(1) \)-SAT \hspace{1em} \text{(big AND of small ORs)}

\[W[2] \text{-complete:} \]
- weighted CNF-SAT \hspace{1em} \text{(big AND of big ORs)}
- k-step 2-finger nondeterministic Turing machine
 \hspace{1em} = 2-tape

\[W[SAT] = \text{reducible to SAT} \]
- SAT \(\to \) CNF-SAT reduction adds extra vars.
 so weighted problems not the same