NP search problem: \(\approx \text{NP-relation} \)
- goal: instance \(\rightarrow \) solution (any)
- for each instance, set of (valid/feasible) solutions
- can recognize instances & their solutions in P

- every NP problem \(\rightarrow \) NP search problem
 (for every choice of YES certificates \(\rightarrow \) solutions)

Counting version \(\#A \) of NP search problem A
- count number of solutions for given instance
- e.g. \(\#\text{SAT} \): find \# satisfying assignments
 \(\#\text{Shakashaka} \): find \# solutions to puzzle

\[\#P = \{ \#A \mid \text{NP search problem } A \} \]
\[= \{ \text{problems solved by polynomial-time nondeterministic counting algorithms} \} \]
\[\rightarrow \text{makes guesses, at end says YES or NO} \]
\[\text{(just like an NP algorithm)} \]
\[\Rightarrow \text{output} = \#\text{guess paths leading to YES} \]

\(\#P \)-hard = as hard as all problems in \(\#P \)
- via multicolor (Cook-style) reductions
\[\Rightarrow \&P \text{ unless } P = \text{NP} \]
- technically, \(\&P = \text{poly-time computable functions} \)
Parsimonious reduction for NP search problems

- instance x of A \mapsto instance x' of B
- computable in polynomial time (like NP reduction)
- $\#A$ solutions to $x = \#B$ solutions to y
 \Rightarrow decision problems (Is solution?) same answer
 \Rightarrow NP reduction too

- $\#A$ is $\#P$-hard \Rightarrow $\#B$ is $\#P$-hard

C-monious reduction: uniform scaling
- $c \cdot \#A$ solutions to $x = \#B$ solutions to y
- preserves $O \Rightarrow$ NP reduction too
- $\#A$ is $\#P$-hard \Rightarrow $\#B$ is $\#P$-hard

$\#P$-complete SAT problems:
- $\#3SAT$
- planar $\#3SAT$
- planar monotone rectilinear $\#3SAT$
- planar positive rectilinear $\#1-in-3SAT$
- planar positive $\#2SAT-3$

$\{\text{as in L7}\}$

- Schaefer-style dichotomy:
 - $\#SAT \in FP \iff$ system of linear equations (mod 2)
 - $\#SAT$ $\#P$-complete otherwise

$[\text{Creignou & Hermann-I&CF 2006]}$

see $[\text{Creignou, Khanna, Sudan-SIGACT 2001}]$
Shakashaka: parsimonious \Rightarrow \#P-hard
[Demaine, Okamoto, Uehara, Uno - CCCG 2013]

Hamiltonian cycles:
- old proofs not parsimonious [Lichtenstein] [Plesnik]
- parsimonious reduction from 3SAT to planar max-degree-3 Hamiltonian cycle [Sato - senior thesis 2002]
- nonplanar case solved earlier [Valiant 1974]

Slitherlink: parsimonious \Rightarrow \#P-hard [Yato 2000]
- here can't use grid graphs
 \Rightarrow optional vertex gadgets
Determinant of $n \times n$ matrix $A = (a_{ij})$ ∈ P

$$= \sum_{\text{permutation } \pi} (-1)^{\text{sign}(\pi)} \prod_{i=1}^{n} a_{i \pi(i)}$$

product of permutation matrix within A

Permanent

$$= \sum_{\text{permutation } \pi} \prod_{i=1}^{n} a_{i \pi(i)}$$

\Rightarrow weighted directed n-node graph $w(i,j) = a_{ij}$:

$$= \sum_{\text{product of edge weights}} \text{cycle cover}$$

vertex-disjoint directed cycles hitting all vertices

\Rightarrow $\#P$-complete [Valiant-TCS 1979]

\Rightarrow c-monious reduction from $\#3SAT$

\Rightarrow weight-1 edges in variable & clause gadgets

\Rightarrow special weight matrix X in junctions

\Rightarrow perm $X = 0$ \Rightarrow not alone in nonzero cycle cover

\Rightarrow entered & exited by bigger cycle

\Rightarrow perm $(X - \text{row} \& \text{col. 1}) = \text{perm}(X - \text{row} \& \text{col. 4}) = 0$

\Rightarrow can't enter & leave immediately

\Rightarrow enter at one end (1 or 4), leave at other

\Rightarrow perm $(X - \text{rows} \& \text{cols. 1} \& 4) = 0$

\Rightarrow can't leave interior 2×2 separate

\Rightarrow must be visited between enter & exit

\Rightarrow perm $(X - \text{row 1} - \text{col. 4}) = \text{perm}(X - \text{row 4} - \text{col. 1}) = 4$

factor for each traversal

\Rightarrow acts as forced edge in var. & clause gadgets

\Rightarrow perm = $4^8 \cdot \#\text{clauses} \cdot \#\text{satisfying assignments}$
Permanant mod r also \#P-hard: [Valiant-TCS 1979]
- multical reduction from Permanant
- set \(r = 2, 3, 5, 7, 11, \ldots \) until product > \(M^n \cdot n! \)
largest absolute entry in matrix <
\[\Rightarrow O(n \lg M + n \lg n) \text{ calls } \& \max r = O(\text{that ln that}) \]
- use Chinese Remainder theorem [Prime # theorem]

0/1-permanent mod r: [Valiant-TCS 1979]
- parsimonious reduction from permanent mod r
 \[\Rightarrow \text{all edge weights (effectively) nonnegative} \]
- replace weight-k edge (k>1) with gadget with k loops
- unique solution if original edge unused
- exactly k solutions if original edge used
 (using exactly 1 loop)

0/1-permanent: [Valiant-TCS 1979]
- one-call reduction from 0/1-permanent mod r
- call with same input
- return output \(\text{ mod } r \)

\[= \text{# cycle covers in given directed graph} \]
\[= \text{# perfect matchings in given bipartite graph} \]
\[(V_1 = \text{rows, } V_2 = \text{columns, } (i, j) \in E \Leftrightarrow a_{ij} = 1) \]
\[V_1 \overrightarrow{V_2} \]
(balanced: \(|V_1| = |V_2| \))
Bipartite # maximal matchings: [Valiant – SICOMP 1977]
- one-call reduction from bipartite # perfect matchings
- replace each vertex with \(n \) copies \((n=1!v!1)\)
 & each edge with biclique \(K_{n,n} \)
 \(\Rightarrow \) old matching of size \(i \)
 \(\rightarrow (n!)^i \) distinct matchings of size \(n \cdot i \)
 (& preserves maximality)
- \# maximal matchings
 \[\leq \sum_{i=0}^{n/2} (\text{# orig. maximal matchings size } i) \cdot (n!)^i \leq (n/2)! \text{\ e.g. } Kn_{n/2}, n/2 \]
 \(\Rightarrow \) can extract \# perfect matchings \((i = n/2)\)

Bipartite # matchings: [Valiant – SICOMP 1977]
- multicall reduction from bipartite # perfect matchings
- \(G \rightarrow G_k : \) for each vertex: add \(k \) adjacent leaves
- \(M_r \) matchings of size \(n/2-r \) in \(G \)
 contained in \(M_r (k+1)^r \) matchings in \(G_k \)
 \(\Rightarrow \) \# matchings in \(G_k = \sum_{r=0}^{n/2} M_r (k+1)^r \)
 - evaluate this polynomial for \(k = 1, 2, \ldots, n/2+1 \)
 \(\Rightarrow \) can extract coefficients \(M_0, M_1, \ldots \)
 - \(M_0 = \) desired \# perfect matchings in \(G \)
Positive \#2SAT
\[= \# \text{ vertex covers} \]
\[\Rightarrow \# \text{ cliques in complement graph} \]

- parsimonious reduction from bipartite \# matchings
- edge \(\rightarrow\) variable: true = not in the matching
- 2 incident edges e & f \(\rightarrow\) clause e \& f
\[\Rightarrow \text{satisfying assignment} = \text{matching} \]

\# Minimal Vertex Covers
\[= \# \text{ maximal cliques in complement graph} \]
\[= \# \text{ minimal truth settings for positive 2SAT} \]

- parsimonious reduction from bipartite
 \# maximal matchings, as above
- minimal satisfying assignment = maximal matching
\[|E|-i \text{ true variables} \leq \text{ size } i \]

3-regular bipartite planar \# Vertex Cover
\[= \text{ planar positive 2SAT-3} \]
\[\text{where each clause has 1 red & 1 blue variable} \]
\[-\#P\text{-complete} \quad [\text{Xia, Zhang, Zhao - TCS 2007}] \]

(2,3)-regular bipartite \# Perfect Matchings
\[-\#P\text{-complete} \quad [\text{Xia, Zhang, Zhao - TCS 2007}] \]

(note: decision versions easy)
Another Solution Problem (ASP) \cite{Ueda & Nagao - TR 1996}
- for NP search problem A:
 ASP A: given one solution, is there another?
 - useful in puzzle design: want unique solution
- e.g. ASP k-coloring $\in P$ (rotate colors)
 & ASP 3-regular Hamiltonian cycle $\in P$
 (always another solution)

ASP reduction: parsimonious reduction $A \rightarrow B$
 & poly.-time bijection between $solutions_A(x)$
 & $solutions_B(x')$
 - induces every parsimonious reduction we've seen
 \Rightarrow ASP A \rightarrow ASP B via NP reduction
 (can map given solution to A \rightarrow sol. to B)
- ASP B $\in P$ \Rightarrow ASP A $\in P$
- ASP A NP-hard \Rightarrow ASP B NP-hard

ASP-hard $=$ ASP reducible from every NP search prob.
 \Rightarrow NP-hard

ASP-complete $=$ ASP-hard NP search problem
 - includes planar 3SATs & Hamiltonicity today,
 Shakashaka, Slitherlink
 - not e-monius reductions: 2SAT, matchings, permanent