Today: video games & PSPACE. First some NP:

Metatheorem 1: [Viglietta-Fun 2012 & arXiv:1201.4995]
- player traversing planar environment from start
- location traversal & single-use paths \(\Rightarrow \) NP-hard
 \>
 player must visit some locations
 \>
 player can traverse only once
- reduction from Planar Max-deg-3 Hamiltonicity
- vertex \(\Rightarrow \) location traversal
 \>
 visit each vertex \(\geq \) once
- edge \(\Rightarrow \) single-use path
 - max. degree 3 \(\Rightarrow \) never revisit vertex
- applications
 - Boulderdash
 - Lode Runner
 - Zelda II

 [Aloupis, Demaine, Guo, Viglietta 2014]

Metatheorem 2: [Viglietta-Fun 2012 & arXiv:1201.4995]
- location traversal & tokens + toll roads \(\Rightarrow \) NP-hard
 \>
 can pick (one) up \(\updownarrow \)
 \>
 need token to traverse
- vertex \(\Rightarrow \) location traversal + token
- edge \(\Rightarrow \) toll road
 - traversing twice \(\Rightarrow \) stranded without token
- application: Pac-Man
Recall from L1:

\[\text{PSPACE} = \{ \text{problems solvable in polynomial space} \} \]
- \(\subseteq \text{EXP} \): only exponentially many states
- \(\supseteq \text{NP} \): simulate all executions, take running or
- \(= \text{NPSPACE} \quad [\text{Savitch 1970}] \)

\underline{Base PSPACE-complete problems:}
- simulate linear-space algorithm (e.g. Turing machine)
- \(\text{QSAT} \quad \text{(AKA QBF & TQBF)} \)
 - given (fully) quantified Boolean formula, is it true?
 - e.g. \(\forall x \exists y : (\overline{x} v y) \land (x v \overline{y}) \quad (x \equiv y) \)
 - can assume quantifiers in front (prenex) & alternate \(\forall / \exists \quad (\exists \text{ only } \Rightarrow \text{SAT} \Rightarrow \text{NP-comp}) \)
- Schaefer-style dichotomy theorem:
 - \(\in \text{P} \Leftrightarrow \text{Horn, dual-Horn, 2-CNF, or X(N)OR} \)
 (not if satisfied by all true/all false)
 - PSPACE-complete otherwise \([\text{Chen-C.Surveys 2009}]\)
- planar Q3SAT \([\text{Schaefer - SIComp 1981}] \quad [L^7] \)
 - add \(\exists \) for new variables at end of quantifiers
- planar 1-in-3 Q3SAT (as in \(L^7 \))
Metatheorem 3: [Viglietta - Fun 2012 & arXiv:1201.4995]

- player traversing planar environment from specified start to specified goal
- door + open pressure plate + close pressure plate
 - traversable → walk on it
 - only if open → open specific door → ditto, close
- reduction from Q3SAT
- clause gadget
- existential quantifier gadget
- universal quantifier gadget
- one plate of each type for each door
- applications:
 - many FPSs e.g. Doom, Quake, Heretic, Hexen, ...
 - many RPGs e.g. Eye of the Beholder
 - many adventure games e.g. SCUMM engine
 (Maniac Mansion, Monkey Island, Space Quest, ...)
 - Prince of Persia
Metatheorem 4: buttons instead of pressure plates

- optional: can press or not
- activates 3 doors at once

- pressure plate gadget

- in fact 2 doors per button suffice
 [Bodlaender & van der Zanden - unpublished 2014]

- applications: MANY
 - Sonic the Hedgehog (Sega Genesis)
 - The Lost Vikings (Super NES; PC) "Erik the Swift"
 - Tomb Raider (Sega Saturn & PS1; PC)

Metatheorem 5: [Aloupis, Demaine, Guo, Viglietta 2014]

- door with traverse, open, close paths \(\Rightarrow\) PSPACE-hard
 only if opened can open \(\Rightarrow\) must close

- applications:
 - Legend of Zelda: A Link to the Past
 (Ocarina of Time, Majora's Mask, Oracle of Seasons, The Minish Cap, Twilight Princess \(\Rightarrow \) PushPush-1)
 - Donkey Kong Country 1, 2, 3
 - Super Mario Bros. [Demaine, Viglietta, Williams - unpublished, 2014]
 - Lemmings [Viglietta - Fw 2014]