Evaluation

Challenges:
- Intrinsic subjectivity of some discourse related judgments
- Hard to find corpora for training/testing
 - Lack of standard corpora for most of the tasks
- Different evaluation methodology for different tasks

Intrinsic Evaluation

Comparison with an “ideal” output:
- Requires a large testing set
- Especially suited for classification tasks
- Typical measures: precision, recall and F-measure
- Confusion metric can help to understand the results
- Statistical significance tests used to validate improvement
- Must include baselines, including a straw baseline (majority class, or random) and comparable methods

Evaluation Strategies

Regina Barzilay

April 26, 2004
Intrinsic Evaluation

Subjective quality evaluation

- **Advantages:**
 - Doesn’t require any testing data
 - Gives an easily understandable performance evaluation

- **Disadvantages:**
 - Requires several judges and a mechanism for dealing with disagreement
 - Tightly depends on the quality of instructions
 - Hard to isolate different components
 - Hard to reproduce

Task-based Evaluation

Advantages:

- Doesn’t require any testing data
- Gives an easily understandable performance evaluation

Disadvantages:

- Hard to find a task with good discriminative power
- Requires multiple judges
- Hard to reproduce

Intrinsic Evaluation

Comparison with an “ideal” output:

- **Advantages:**
 - Results can be easily reproducible
 - Allows to isolate different factors contributing to system performance

- **Disadvantages:**
 - In the presence of multiple “ideal” outputs, penalizes alternative solutions
 - Distance between an “ideal” and a machine-generated output may not be proportional to the human perception of quality

Task-based Evaluation

Examples:

- Dialogue systems: Book a flight satisfying some requirements
- Summarization systems: Retrieve a story about X from a collection of summaries
- Summarization systems: Determine if a paper X should be part of related work for a paper on topic Y
Large Annotation Efforts

- Dialogue acts
- Coreference
- Discourse relations
- Summarization

The first three are available through LDC, the last one is available through DUC

Basic Scheme

Preliminary categories that seem to cover the range of phenomena of interest

- Different categories functionally important and/or easy to distinguish

Today

- Basic of annotations; agreement computation
- Estimating difference in the distribution of two sets
 - Significance of the method’s improvement
 - Impact of a certain change on the system’s performance
- Comparing rating schemes

Developing an Annotation Scheme

Main steps:

- Basic scheme
- Preliminary Annotation
- Informal evaluation
- Scheme revision and re-coding
- Coding manual
- Formal evaluation: inter-code reliability

Ready to code real data
Example: Dialogue Act Classification

Taxonomy principles:

- Activity-specific
 - Must cover activity features
 - Make crucial distinctions
 - Avoid irrelevant distinctions
- General
 - Aim to cover all activities
 - Specific activities work in a sub-space
 - Activity-specific clusters as “macros”

Informativeness:

- Difference in conditions/effects vs. confidence in label
- Generalization vs. distinctions
 * Example: state, assert, inform, confess, concede, affirm, claim

Granularity:

- Complex, multi-functional acts vs. simple acts (the latter relies on multi-class classification)

Informal Evaluation and Development

- Analysis of problematic annotations
 - Are some categories missing?
 - Are some categories indistinguishable for some coding decisions?
 - Do categories overlap?
- Meetings between annotators and scheme designers and users
- Revision of annotation guidelines
- More annotations

Result: Annotation manual

Preliminary Annotation

- Algorithm
 - Automated annotation if possible
 * Semi-automated (partial, supervised decisions)
 - Decision trees for human annotators
- Definitions, guidelines
- Trial run with multiple annotators
 - Ideally following official guidelines or algorithm rather than informally taught
Reliability of Annotations

- The performance of an algorithm has to be evaluated against some kind of correct solution, the *key*
- For most linguistic tasks *correct* can be defined using human performance (not linguistic intuition)
- If different humans get different solutions for the same task, it is questionable which solution is correct and whether the task can be solved by humans at all
- Measures of reliability have to be used to test whether human performance is reliable
- If human performance is indeed reliable, the solution produced by human can be used as a key against which an algorithm can be evaluated

Agreement: Balanced Distribution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[p(A) = \frac{9}{10} = 0.9 \]

Formal Evaluation

- Controlled coding procedures
 - Individuals coding unseen data
 - Coding on the basis of manual
 - No discussion between coders
- Evaluation of inter-code reliability
 - Confusion matrix
 - Statistical measure of agreement

Reliability of Annotations

- Kowtko et al. (1992) and Litman & Hirschberg use pairwise agreement between naive annotators
- Silverman et al. (1992) have two groups of annotators: a small group of experienced annotators and a large group of naive annotators. Assumption: the annotations are reliable, of there is only a small difference between groups.

However, what does reliability mean in these cases?
Agreement: Balanced Distribution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[p(A) = \frac{9}{10} = 0.9 \]

\[p(E) = (A/T)^2 + (B/T)^2 + (C/T)^2 = 0.335 \]

Agreement: Skewed Distribution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[p(A) = \frac{9}{10} = 0.9 \]

\[p(E) = (A/T)^2 + (B/T)^2 + (C/T)^2 = 0.815 \]

Kappa

- The kappa statistics can be used when multiple annotators have to assign markables to one of a set of non-ordered classes
- Kappa is defined as:

\[K = \frac{P(A) - P(E)}{1 - P(E)} \]

where \(P(A) \) is the actual agreement between annotators, and \(P(E) \) is the agreement by chance
Today

- Basic of annotations; agreement computation
- Estimating difference in the distribution of two sets
 - Significance of the method’s improvement
 - Impact of a certain change on the system’s performance
- Comparing rating schemes

Kappa Interpretation

- Complete agreement: $K = 1$; random agreement: $K = 0$ random agreement
- In our example: K for balance set is 0.85, and for skewed one is 0.46
- Typically, $K > 0.8$ indicates good reliability

Many statisticians do not like Kappa! (alternative: interclass agreement)

Paired Data

- Goal: determine the impact of a certain fact on a given distribution
- Test is performed on the same sample
- Example scenario: we want to test whether adding parsing information improves performance of a summarization system on a predefined set of texts
- Null hypothesis: the actual mean difference is consistent with zero

Student’s t-Test

- Goal: determine whether two distributions are different
- Samples are selected independently
- Example scenario: we want to test whether adding parsing information improves performance of a summarization system
- Null hypothesis: the difference is due to chance
 For $N = 10$, $X_{avg} \pm 2.26 * \sigma / N^{\frac{1}{2}}$ (with 95% confidence)
- “Statistical significance”: the probability that the difference is due to chance
Chi-squared test

- Goal: compare expected counts
- Example scenario: we want to test whether number of backchannels in a dialogue predicted by our algorithm is consistent with their distributions in real text
- Assume “normal” distribution with mean μ and standard deviation σ:

$$
\chi^2 = \sum_{i=1}^{k} \frac{(x_i - \mu)^2}{\sigma^2}
$$

Chi-squared test

- In some cases, we don’t know the standard deviation for each count:

$$
X^2 = \sum_{i=1}^{k} \frac{(x_i - E_i)^2}{E_i}
$$

- $E_i = p_i N$
- Assume the Poisson distribution (the standard deviation equals the square of the expected counts)
- Restrictions: not applicable for small E_i

Evaluation Strategies

Today

- Basic of annotations; agreement computation
- Estimating difference in the distribution of two sets
- Comparing rating schemes

Evaluation Strategies

Anova

- Goal: determine the impact of a certain fact on several distributions (assumes cause-effect relation)
- Samples are selected independently
- Null hypothesis: the difference is due to chance
- Computation:

$$
F = \frac{\text{found variation of the group averages}}{\text{expected variation of the group averages}}
$$

- Interpretation: if $F = 1$ null hypothesis is correct, while large values of F confirm the impact

Evaluation Strategies

Today

- Basic of annotations; agreement computation
- Estimating difference in the distribution of two sets
- Comparing rating schemes

Evaluation Strategies
Kendall’s τ

- Goal: estimate the agreement between two orderings
- Computation:

$$\tau = 1 - 2 \frac{I}{N(N - 1)/2},$$

where N is a sample size and I is the minimal number of interchanges required to map the first order into the second