Today

- More on Shannon’s theory
 - Proof of converse.
 - Few words on generality.
 - Contrast with Hamming theory.
- Back to error-correcting codes: Goals.
- Tools:
 - Probability theory:

Proof of Converse Coding Theorem

- Intuition: For message m, let $S_m \subseteq \{0,1\}^n$ be the set of received words that decode to m. ($S_m = D^{-1}(m)$).
- Average size of $D(m) = 2^{n-k}$.
- Volume of disc of radius pn around $E(m)$ is $2^{H(p)n}$.
- Intuition: If volume $\gg 2^{n-k}$ can’t have this ball decoding to m — but we need to!
- Formalize?

Proof of Converse Coding Theorem (contd.)

$$\text{Prob. } [\text{correct decoding }] = \sum_{\eta \in \{0,1\}^n} \sum_{m \in \{0,1\}^k} \Pr[m \text{ sent, } \eta \text{ error and } I_{m,\eta} = 1]$$

$$\leq \sum_{\eta \in B(p'n,n)} \Pr[\eta \text{ error}] + \sum_{\eta \notin B(p'n,n)} \sum_{m} 2^{-k} \cdot \frac{1}{2^{H(p')n}} \cdot I_{m,\eta}$$

$$\leq \exp(-n) + 2^{-k-H(p')n} \cdot \sum_{m,\eta} I_{m,\eta}$$

$$= \exp(-n) + 2^{-k-H(p')n} \cdot 2^n$$

$$\leq \exp(-n)$$

Let $I_{m,\eta}$ be the indicator variable that is 1 iff $D(D(E(m) + \eta)) = m$.

Let $p' < p$ be such that $R > 1 - H(p')$.
Generalizations of Shannon’s theorem

- Channels more general
 - Input symbols \(\Sigma \), Output symbols \(\Gamma \), where both may be infinite (reals/complexes).
 - Channel given by its probability transition matrix \(P = P_{\sigma, \gamma} \).
 - Channel need not be independent - could be Markovian (remembers finite amount of state in determining next error bit).

- In almost all cases: random coding + mld works.

- Always non-constructive.

Some of the main contributions

- Rigorous Definition of elusive concepts: Information, Randomness.

- Mathematical tools: Entropy, Mutual information, Relative entropy.

- Theorems: Coding theorem, converse.

- Emphasis on the “feasible” as opposed to “done”.

Contrast between Hamming and Shannon

- Works intertwined in time.

- Hamming’s work focusses on distance, and image of \(E \).

- Shannon’s work focusses on probabilities only (no mention of distance) and \(E, D \) but not properties of image of \(E \).

- Hamming’s results more constructive, definitions less so.

- Shannon’s results not constructive, though definitions beg constructivitty.
Our focus

- Codes, and associated encoding and decoding functions.
- Distance is not the only measure, but we will say what we can about it.
- Code parameters: n, k, d, q;
- typical goal: given three optimize fourth.
- Coarser goal: consider only $R = k/n$, $\delta = d/n$ and q and given two, optimize the third.
- In particular, can we get $R, \delta > 0$ for constant q?

Tools

- Probability tools:
 - Linearity of expectations, Union bound.
 - Expectation of product of independent r.v.s
 - Tail inequalities: Markov, Chebychev, Chernoff.
- Algebra
 - Finite fields.
 - Vector spaces over finite fields.
- Elementary combinatorics and algorithmics.

Finite fields and linear error-correcting codes

- Field: algebraic structure with addition, multiplication, both commutative and associative with inverses, and multiplication] distributive over addition.
- Finite field: Number of elements finite. Well known fact: field exists iff size is a prime power. See lecture notes on algebra for further details. Denote field of size q by \mathbb{F}_q.
- Vector spaces: V defined over a field \mathbb{F}. Addition of vectors, multiplication of vector with “scalar” (i.e., field element) is defined,
and finally an inner product (product of two vectors yielding a scalar is defined).

- If alphabet is a field, then ambient space Σ^n becomes a vector space \mathbb{F}_q^n.
- If a code forms a vector space within \mathbb{F}_q^n then it is a linear code. Denoted $[n, k, d]_q$ code.

Example: Dual of Hamming codes

- Message $\mathbf{m} = \langle m_1, \ldots, m_\ell \rangle$.
- Encoding given by $\langle \langle \mathbf{m}, \mathbf{x} \rangle \rangle_{\mathbf{x} \in \mathbb{F}_2^\ell} = \mathbf{0}$.
- Fact: (will prove later): $\mathbf{m} \neq \mathbf{0}$ implies $\Pr_x[\langle \langle \mathbf{m}, \mathbf{x} \rangle \rangle = 0] = \frac{1}{2}$.
- Implies dual of $[2^\ell - 1, 2^\ell - \ell - 1, 3]_2$ Hamming code is a $[2^\ell - 1, \ell, 2^{\ell-1}]$ code.
- Often called the simplex code or the Hadamard code. (If we add a coordinate that is zero to all coordinates, and write 0s as -1s, then the matrix whose rows are all the codewords form a $+1/-1$ matrix whose product with its transpose is a multiple of the identity matrix. Such matrices are called Hadamard matrices, and hence the code is called a Hadamard code.)
- Moral of the story: Duals of good codes end up being good. No proven reason.

Why study this category?

- Linear codes are the most common.
- Seem to be as strong as general ones.
- Have succinct specification, efficient encoding and efficient error-detecting algorithms. Why? (Generator matrix and Parity check matrix.)
- Linear algebra provides other useful tools: Duals of codes provide interesting constructions.
- Dual of linear code is code generated by transpose of parity check matrix.
Next few lectures

• Towards asymptotically good codes:
 – Some good codes that are not asymptotically good.
 – Some compositions that lead to good codes.