1 Overview

This lecture is focused in comparisons of the following properties/parameters of a code:

- List decoding, vs distance.
- Distance, vs rate.
- List decoding, vs rate.

2 The Plotkin’s Bound

Recall that for two binary strings \(x, y \in \{0,1\}^n\), we denote by \(\Delta(x, y)\) the number of positions that \(x\) and \(y\) differ.

Theorem 1 (Plotkin’s Bound) If there exist codewords \(c_1, c_2, \ldots, c_m \in \{0,1\}^n\), such that for each \(i, j\), with \(i \leq j\), \(\Delta(c_i, c_j) \geq n/2\), then \(m \leq 2n\).

Proof Assume that \(m > 2n\). We define vectors \(\tilde{c}_1, \ldots, \tilde{c}_m \in \{-1,1\}^n \subset \mathbb{R}^n\), such that for each \(i\), with \(1 \leq i \leq n\), \(\tilde{c}_i\), and for each \(i\), with \(1 \leq j \leq n\), the \(j\)th coordinate of \(\tilde{c}_i\) is \(-1\), iff the \(j\)th bit of \(c_i\) is \(1\). Note that if \(\Delta(c_i, c_j) \geq n/2\), then this implies \(\langle \tilde{c}_i, \tilde{c}_j \rangle \leq 0\). Intuitively, this means that if two codewords \(c_i\), and \(c_j\) have large Hamming distance, then the angle between the corresponding vectors \(\tilde{c}_i\), and \(\tilde{c}_j\), should be large.

Pick a random unit vector \(x \in \mathbb{R}^n\). We have that w.h.p., \(\langle x, \tilde{c}_i \rangle \neq 0\), for all \(i\), with \(1 \leq i \leq m\). Moreover, since there are \(m\) codewords, either \(x\), or \(-x\) has strictly positive inner product with at least \(m/2\) of the \(\tilde{c}_i\)s. We can assume w.l.o.g., that this holds for \(x\). Since \(m > 2n\), it follows that there exist \(n + 1\) vectors having strictly positive inner product with \(x\). W.l.o.g., assume that these are the vectors \(\tilde{c}_1, \ldots, \tilde{c}_{n+1}\).

Observe that a set of \(n+1\) vectors in an \(n\)-dimensional space, cannot be linear independent. Thus, we can assume that there exist \(\lambda_1, \ldots, \lambda_{n+1} \in \mathbb{R}\), with \(\lambda_i > 0\), for each \(i\), with \(1 \leq i \leq j\), and \(\lambda_i \leq 0\), for each \(i\), with \(j < i \leq n+1\), such that

\[
\sum_{i=1}^{j} \lambda_i \tilde{c}_i - \sum_{i=j+1}^{n+1} \lambda_i \tilde{c}_i = 0
\]

Define the vector \(z = \sum_{i=1}^{j} \lambda_i \tilde{c}_i\). We have to consider the following two cases for \(z\):

Case 1, \(z \neq 0\): We have \(\langle z, z \rangle > 0\). On the other hand,

\[
\langle z, z \rangle = \left\langle \sum_{i=1}^{j} \lambda_i \tilde{c}_i, \sum_{i=j+1}^{n+1} \lambda_i \tilde{c}_i \right\rangle
\]

\[
= \sum_{i \leq j, i' > j} \lambda_i \lambda_{i'} \langle c_i, c_{i'} \rangle
\]

\[
\leq 0
\]

Thus, we obtain a contradiction.
Case 2, $z = 0$: We have
\[\sum_{i=1}^{j} \lambda_i \tilde{c}_i = 0, \]
and thus
\[\langle z, x \rangle = \left\langle \sum_{i=1}^{j} \lambda_i \tilde{c}_i, x \right\rangle = \sum_{i=1}^{j} \lambda_i \langle \tilde{c}_i, x \rangle > 0. \]
The last inequality follows from the fact that $\lambda_i > 0$, for $1 \leq i \leq j$, and that $\langle \tilde{c}_i, x \rangle > 0$. This however is a contradiction, since $z = 0$, which implies that $\langle z, x \rangle = 0$.

\section{The Johnson’s Bound}

\textbf{Theorem 2 (Johnson’s Bound)} For any ϵ, with $0 < \epsilon < 1$, if C is a $[n, \tau, \left(\frac{q-1}{q} \right)(1 - \epsilon)n]_q$-code, then C corrects less than $\left(\frac{q-1}{q} \right)(1 - \sqrt{\epsilon})n$ errors, with lists of size $(q - 1)n$.

We will give a proof of Theorem 2, for the special case of $q = 2$.

\textbf{Proof} We will prove the contrapositive. That is, we assume that there exist $r, c_1, \ldots, c_m \in \{0, 1\}^n$, such that for each i, with $1 \leq i \leq m$,
\[\Delta(r, c_i) \leq \frac{1 - \tau}{2}n, \]
and for each $i \neq j$,
\[\Delta(c_i, c_j) \geq \frac{1 - \epsilon}{2}n. \]
Define vectors $\tilde{r}, \tilde{c}_1, \ldots, \tilde{c}_m \in \{0, 1\}^n \subset \mathbb{R}^n$, as in the proof of Theorem 1. We have that for each i, with $1 \leq i \leq m$,
\[\langle \tilde{r}, \tilde{c}_i \rangle \leq \tau n, \]
and for each $i \neq j$,
\[\langle \tilde{c}_i, \tilde{c}_j \rangle \geq \epsilon n. \]
We want to show that is $\tau > \sqrt{\epsilon}$, then $m \leq n$.

We have that the projection of each \tilde{c}_i into r is “large”, and that the angle between each pair of \tilde{c}_i, \tilde{c}_j is also “large”. Intuitively, the main idea of the proof is that these two properties cannot be satisfied simultaneously, if the number of the vectors \tilde{c}_i is too large. We will verify this argument by considering the vectors $\tilde{c}_i - \alpha \tau r$, for carefully chosen α, and show that the angle between each pair of such vectors is at least 90°. Thus, we will obtain a bound on the number of such vectors.
Formally, we have
\[
\langle c_i - \alpha r, c_j - \alpha \rangle = \langle c_i, c_j \rangle - \alpha \langle c_i, r \rangle - \alpha \langle c_j, r \rangle + \alpha^2 \langle r, r \rangle \\
\leq (\epsilon - 2\alpha \tau + \alpha^2)n
\]
By setting \(\alpha = \sqrt{\tau} \), we obtain that the inner product between each pair of vectors \(\tilde{c}_i - \alpha r \), and \(\tilde{c}_j - \alpha r \) is
\[
2\sqrt{\tau}(\sqrt{\tau} - \tau)n
\]
Thus, for any \(\tau < \sqrt{\tau} \), the inner product is negative, and the assertion follows by applying the Plotkin’s Bound. \(\blacksquare \)

We note that for the case \(q > 2 \), the proof of Theorem 2 becomes more technical. More specifically, one needs to map each bit of a codeword \(c_i \), into more than one coordinates of the corresponding vector \(\tilde{c}_i \). For example, if we have codewords in \(\{0, 1, 2\}^n \), we can map each symbol of a vector in \(\mathbb{R} \), such that the angle between each vector is at least 90°.

4 Relating \(R \) with \(\delta \)

4.1 Improving the Singleton Bound

Lemma 3 If there exists a \((n, k, d)\)-code, then there also exists a \((2d, k + 2d - n, d)\)-code.

Proof Let \(C \) be a \((n, k, d)\)-code. \(C \) contains \(2^k \) codewords, of length \(n \). Thus, if we project each codeword into the first \(n - 2d \) coordinates, there are at least \(2^{k + 2d - n} \) codewords, that are mapped into the same string. Since all these \(2^{k + 2d - n} \) codewords have the same prefix of length \(n - 2d \), and since their distance is at least \(d \), it follows that their pairwise distance in the last \(2d \) bits should be at least \(d \). Thus, the suffixes of these codewords form a \((2d, k + 2d - n, d)\)-code. \(\blacksquare \)

It follows by Lemma 3 that for any \((n, k, d)\)-code, with \(k + 2d - n \leq \log 4d \), we have
\[
R + 2\delta - 1 \leq 0.
\]

4.2 The Elias-Bassalygo Bound

The main argument in the proof of the Hamming bound is that if we have \(k \) non-intersecting balls of radius \(\frac{d-1}{2} \), in \(\{0, 1\}^n \), then the sum of their volumes cannot exceed \(2^n \). We will show how to extend this idea in the case of intersecting balls, by bounding the overlap.

Assume that we have a binary code of distance \(\frac{1 - \sqrt{\tau}}{2} \). For each codeword \(c \in \{0, 1\}^n \), we consider the ball in \(\{0, 1\}^n \) of radius \(\frac{1 - \sqrt{\tau}}{2} \) around \(c \). We have
\[
2^k \text{Vol} \left(n, \frac{1 - \sqrt{\tau}}{2} \right) \leq n2^n,
\]
and thus
\[
2^{R + \text{H} \left(\frac{1 - \sqrt{\tau}}{2} \right)} \leq 2^{n + o(n)}.
\]
This implies
\[
R + \text{H} \left(\frac{1 - \sqrt{\tau}}{2} \right) \leq 1
\]
So, if \(\delta = \frac{1 - \sqrt{\tau}}{2} \), then
\[
R + \text{H} \left(\frac{1}{2} - \frac{1}{2}\sqrt{1 - 2\delta} \right) \leq 1.
\]
4.3 The Case $\delta \to 0$

An interesting question is what are the best possible codes, when $\delta \to 0$. The Hamming bound gives

$$\begin{align*}
R &\leq 1 - H\left(\frac{\delta}{2}\right) \\
&\approx 1 - \frac{1}{2}(1 + o(1))\delta \log_2 \frac{1}{\delta}.
\end{align*}$$

On the other hand, we know that there exist codes satisfying

$$R \geq 1 - (1 + o(1))\delta \log_2 \frac{1}{\delta}.$$

4.4 The Case $\delta \to 1/2$

Another interesting question is what is the best possible value for R, in the case where $\delta = \frac{1 - \epsilon}{2}$, with $\epsilon \to 0$. The Plotkin bound gives $R \leq 2\epsilon$. Also, the EB-bound gives $R = O(\epsilon)$.

On the positive side, we can show (even for the case of random codes), that there exist codes with $R = \Omega(\epsilon^2)$.

We also note that the Linear-Programming bound gives $R = \tilde{O}(\epsilon^2)$ (also known as MRRW-bound, or JPL-bound).

5 Relating R with p

We would like to know what is the best possible values for R, and p, such that for infinitely many n, we have $(n, Rn, ?)_2$-codes, that are (pn, n)-error-correcting.

The Shannon bound gives

$$R \leq 1 - H_2(p)$$

We will next prove that this bound is tight.

Lemma 4 There exist codes, satisfying $R \geq 1 - H_2(p)$.

Before we state the proof, we note that the same result can be obtained by using random codes in $\{0, 1\}^n$, but the proof is rather technical.

Proof We will show that there exists a linear code of rate R, that is $(pn, n + 1)$-error-correcting. We begin with an empty basis for the code, and we repeatedly increase the basis, by greedily adding one base-vector at a time.

More specifically, assume that we have already added the vectors $b_1, b_2, \ldots, b_k \in \{0, 1\}^n$ in the basis. Let $C_i = \text{span}\{b_1, \ldots, b_i\}$. We pick b_{i+1}, so as to minimize the value Φ_{i+1}, where for each i, the value Φ_i is given by the following potential function:

$$\Phi_i = \mathbb{E}\left[2^{|B(x, pn) \cap C_i|}\right],$$

where the expectation is taken over the random choices of x, when x is distributed uniformly in $\{0, 1\}^n$.

We have

$$\mathbb{E}[\Phi_{i+1}] \leq \Phi_i^2$$

Thus, we can conclude that there exist base vectors b_1, \ldots, b_k, such that

$$\Phi_k \leq \Phi_0^{2^k}$$
Note that

\[\Phi_0 = 1 + \frac{\text{Vol}(n, pn)}{2^n} \]

To be continued in the next lecture ...