Sorting on 1 and 2D Arrays

Linear array: odd-even transposition sort

\[X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6 \rightarrow X_7 \rightarrow X_8 \]

Odd-even transposition sorts in \(2N \) steps (with \(N \) odd).

Def: Oblivious comparison-exchange alg. Comparisons prespecified. Independent of results of prev comparisons. *(e.g., quicksort *not* oblivious)*

Thm: If an oblivious comparison-exchange alg sorts all \(2^N \) sequences of 0's and 1's, it sorts all sequences of arbitrary #s.
Proof: In 2 parts:

(1) Let f be monotonically increasing function. Then
\[
\begin{align*}
\min \{ f(x), f(y) \} & = f(\min \{ x, y \}) \\
\max \{ f(x), f(y) \} & = f(\max \{ x, y \}).
\end{align*}
\]

By induction on timesteps, if alg transforms
\[
\langle a_1, x_2, \ldots, a_n \rangle \to \langle b_1, x_2, \ldots, b_n \rangle,
\]
then it transforms
\[
\langle f(a_1), f(a_2), \ldots, f(a_n) \rangle \to \langle f(b_1), f(b_2), \ldots, f(b_n) \rangle.
\]

<< See CLR >>

(2) Suppose false, i.e., network sorts all 0-1 seq., but \(\exists \langle a_1, a_2, \ldots, a_n \rangle \) s.t. \(a_i < a_j \), but \(a_i \) comes after \(a_j \) in output.

Define \(f(x) = \begin{cases} 0, & \text{if } x \leq a_i \\ 1, & \text{if } x > a_i \end{cases} \).

But network fails to sort \(\langle f(a_1), f(a_2), \ldots, f(a_n) \rangle \)

Contradiction.

<< Threshold induction >>

\(\Rightarrow \) Need only construct 0-1 sorting algo!
There: Odd-even transposition sort runs in \(N \) steps (with \(\frac{1}{2} \) of \(\text{OPT} \)).

Result less interesting than proof method.

Proof: Consider movement of rightmost 1.

1st step: may not move 1.

During subsequent steps, moves forward.

\(\Rightarrow \) cannot block other 1's.

\(\Rightarrow \) kth leftmost 1 begins moving 1 step: \(k+1 \).

Must reach position \(N-k+1 \).

\(\Rightarrow \) All elements in final position by time \(N \).
Sorting an 2D Grid

Lower bounds: \[2 \sqrt{N} - 2 \quad \text{(diameter)} \]
\[\frac{1}{2} \sqrt{N} \quad \text{(bisection)} \]

Natural Grid Orders:

```
\[ \Longrightarrow \quad \downarrow \downarrow \downarrow \quad \leftarrow \leftarrow \]
```

"Broken" Alg:

Repeat:
1. \[\downarrow \downarrow \downarrow \]
2. \[\leftarrow \leftarrow \]

Doesn't yield unique order:

\[\begin{align*}
0 \uparrow 10 & \Rightarrow \begin{cases}
01 \quad \downarrow 1 \Rightarrow \\
01 \Rightarrow \downarrow \downarrow
\end{cases}
\end{align*} \]
Shearsort

Repeat

\[
\begin{align*}
\text{Thm: Shearsort produces unique sorting order after time } O(JN \log N). \text{ Eg., } O(\log N) \text{ phases sufficient to sort.}
\end{align*}
\]

Pf: Apply 0-1 lemma.

Def: 00 - 00 \(\Rightarrow\) "clean" lines

\[
\text{or}
\]

0 - 0 \(\text{or} - 1 \Rightarrow\) "dirty" lines

Claim: After each phase, # dirty rows decreases by at least half.
Grid has 3 regions:

divide dirty into pairs of rows:

either:

\[
\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}
\]

or:

After sorting columns:

either:

\[
\begin{array}{c}
1 \\
0 \\
1 \\
0
\end{array}
\]

or:

\[
\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0
\end{array}
\]

⇒ dirty region decreases by \(\geq \frac{1}{2} \).

⇒ after \(\log N \) phases [\(\Theta(\sqrt{N} \log N) \) time] all sorted.
Lemma: Shearsort runs in $\mathcal{O}(\lg N)$ phases.

Proof: Bad example: 0's in 1st column.

\[
\begin{array}{c}
\begin{array}{c}
0 \quad 1
\end{array}
\end{array}
\Rightarrow
\begin{array}{c}
\begin{array}{c}
0 \quad 0
\end{array}
\end{array}
\]

\[
\downarrow
\]

\[
\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\Rightarrow
\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\]

height of 1$^\text{st}$ column decreases by factor of 2 in each round.

Average Case:

Substitute 0's for \sqrt{N} smallest elms.

- Row sort first: $E[\# 0's \text{ in } 1\text{st column}] = \Theta(N)$.
- Column sort first: not true.
 best LB $= \mathcal{O}(N\sqrt{\lg N})$.

$O(\sqrt{N})$ Algorithm \ $(\leq 8\sqrt{N})$

Assume \sqrt{N} is power of 2

1. Recursively sort each quadrant in snake order.

2. Sort rows in alternate order.

3. Sort columns.

4. Do $2\sqrt{N}$ steps of 1D odd-even transposition on overall snake order.
Running time:

\[T(N) = T(N/4) + \sqrt{N} + \sqrt{N} + 2\sqrt{N} \]
\[\leq 8\sqrt{N} \]

Proof of Correctness:

Phase 1: In each quadrant at most one of rows is dirty and rest are clean.

Phase 2
Phase 3

- **Claim:** ≤ 1 dirty row in top half & bottom half.
 - (**gilding the lily, we already have a O(Tn) alg**)

Proof:

Case 1: # so-so rows even.

Case 2: # so-so rows odd.

=> Sorted after phase 4