Hypercube network

- **d** dimensions
- \(N = 2^d \) nodes

\[\begin{align*}
 &d = 0 \\
 &N = 1 \\
 &d = 1 \\
 &N = 2 \\
 &d = 2 \\
 &N = 4 \\
 &d = 3 \\
 &N = 8 \\
 &d = 4 \\
 &N = 16
\end{align*} \]

Label each of the \(2^d \) nodes with a \(d \)-bit binary string:

\[b_{d-1} b_{d-2} \ldots b_0 \]

Connect two nodes if they differ in exactly 1 bit:

\[b_{d-1} b_{d-2} \ldots b_0 \]

\[\text{connected to} \]

\[b_{d-1} b_{d-2} \ldots b_0 \]

\[b_{d-1} b_{d-2} \ldots b_0 \]

\[\vdots \]

\[b_{d-1} b_{d-2} \ldots b_0 \]

Diameter = \(d = \lg N \)

Degree = \(d = \lg N \)

\(B/W = N/2 \)

wires = \(Nd/2 = \Theta(N \lg N) \)
Embeddings in the hypercube

Theorem The N-node hypercube contains an N-node linear array as a subgraph (i.e., a hamiltonian path).

Proof. True for $N=1, 2, 4$.

\[
\begin{array}{c}
0 \quad 0 \\
\end{array}
\]

Induction on d. Claim a hamiltonian cycle for d-dim hypercube for $d \geq 2$.

Base:

\[
\begin{array}{c}
\end{array}
\]

Assume claim true for $N/2$-node hypercube.
Consider $N=2^d$ hypercube.

\[
\begin{array}{c}
\end{array}
\]

Consists of 2 $N/2$-node hypercubes containing (identical) hamiltonian cycles (by IH). Let (Ox_1, Ox_2) be any edge in 1st subcube that cycle goes through, and let $(1x_1, 1x_2)$ be corresponding edge in 2nd subcube. Replace these two edges with $(0x_1, 1x_1)$ and $(Ox_2, 1x_2)$. \(\square \)
Def. A d-bit Gray code is an ordering of the 2^d d-bit bit-strings such that each string differs from the previous in exactly one bit.

Ex. $d=3$

```
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0
```

"Reflecting" Gray code

Corollary. d-bit Gray codes exist if $d \geq 1$.

Hamiltonian path in hypercube = Gray code.

Theorem. Let $d_1 + d_2 \geq d$. Then a $2^{d_1} \times 2^{d_2}$ mesh (or torus) can be embedded in an $N = 2^d$-node hypercube.

Pf. Let $g_1(x_1)$ be d_1-bit Gray code of x_1, where $0 \leq x_1 < 2^{d_1}$.

Let $g_2(x_2)$ be d_2-bit Gray code of x_2, where $0 \leq x_2 < 2^{d_2}$.

Map node (x_1, x_2) of mesh to node $g_1(x_1) \parallel g_2(x_2)$ of hypercube.

Ex. 8×8 mesh.

```
(3, 6) 0 1 0 1 0 1 0 1
(4, 5) 1 1 0 1 1 0 1 0
(4, 6) 1 0 1 0 1 1 0 1
(4, 7) 0 1 0 1 0 1 0 1
(5, 6) 1 1 1 0 0 0 0 0
```

Corollary. $2^{d_1} \times 2^{d_2} \times \ldots \times 2^{d_k}$ mesh embedded in $2^{d_1 + d_2 + \ldots + d_k}$ hypercube.

Fact: 3×5 mesh cannot be embedded in 16-node hypercube.

But $m \times n$ mesh can be embedded in $2^{\lceil \log_2 mn \rceil}$-node hypercube with dilation 2.
Embedding trees in hypercubes

Thm. Not possible to embed (N-1)-node complete binary tree in N-node hypercube.

Proof. Suppose possible. Root mapped to node 00...0.
Depth-1 nodes mapped to nodes with odd parity.
Depth-2 " " " " even " " odd " " odd (Def. Parity = \{odd if #1's is odd, even if #1's is even\})

#leaves = N/2: all have same parity.
#grandparents of leaves = N/8: same parity as leaves.

But, hypercube has N/2 nodes with even parity and N/2 nodes with odd parity, and tree must have ≥ N/2 + N/8 nodes with same parity.

Def. Double-rooted complete binary tree:

\[\text{Thm. } N\text{-node double-rooted CBT is subgraph of } N\text{-node hypercube, for } N \geq 2. \]

Proof. Induction on d.
\[d = 1 \text{ (N=2): } \]
\[d = 2 \text{ (N=4): } \]
\(d \geq 3 \) \((N \geq 8)\): Embed double-rooted cft on \(N/2 \) nodes in \(N/2 \)-node 0-subcube. Consider top 4 nodes:

\[
\begin{array}{c}
\text{a} & \text{b} & \text{c} & \text{d} \\
0000 & 0010 & 0100 & 0110 \\
\end{array}
\]

\[a, b \text{ differ in dim } i_0, \quad b, c \text{ differ in dim } i_1, \text{ and } c, d \text{ differ in dim } i_2. \]

Note: \(i_0 \neq i_1 \neq i_2 \) \(\text{or else } a = c \text{ or } b = d\).

Embed double-rooted cft on \(N/2 \) nodes in \(N/2 \)-node 1-subcube identically, except \(b' = 100 \ldots 0 \) and permute dimensions \(i_1 \rightarrow i_0 \) and \(i_2 \rightarrow i_1 \).

Thus, \((a, b'), (b, c'), \) and \((c, d')\) adjacent.
Corollary: $(N-1)$-node CBT embeds in N-node hypercube with dilation 2.

Proof:

Embed CBT into double-rooted CBT with 1 edge having dilation 2. \(\square\)

Fact: All N-node binary trees can be embedded into N-node hypercube with $O(1)$ dilation. \(\leq 5\)