"Ideal" parallel computer (Slides 2-3)
Problem: # wires = \(\Theta(N^2)\) bad
degree = \(\Theta(N)\) bad
diameter = \(\Theta(1)\) good

Implement as low-degree network (Slides 4-8)
\(N \times N\) mesh of trees:
switches = \(\Theta(N^2)\) bad
degree = \(\Theta(1)\) good
diameter = \(\Theta(lg N)\) good

Direct network: every node is a processor
Indirect network: processors + switches
(inputs/outputs)

Routing on \(N \times N\) MOT
\(N\) messages at row roots
Route to column roots
- Assume perm, since otherwise hotspot could make any network look bad.
Time = \(\Theta(lg N)\) — but lots of hardware.

Hypercube (Slides 9-10)
Routing: flip any bit that's wrong by routing on that dimension.

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

Bitwise XOR of current msg location and dest.

\(\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\)
But, msgs may collide.
Also, degree = \(lg N\).
Cube-connected cycles (Slide 11)

- $N = n \log n$ nodes
- degree $= \Theta(1)$
- diameter $= \Theta(\log N)$

Butterfly (FFT) network (Slides 12-13)

- n inputs, n outputs $\quad \langle \text{direct vs. indirect} \rangle$
- $N = n \log n$ nodes
- $\Theta(1)$ degree
- Diameter $= \Theta(\log N)$ $\langle \text{little tricky if not } 2 \text{ or } 0 \rangle$

Isomorphic to CCC, but authors didn't realize.

Decomposing a butterfly (Slides 14-24)

- Remove major cycles $\Rightarrow 2 \cdot n/2$-input butterflies
- Remove minor cycles \Rightarrow

Routing on butterfly (Slide 25)

- Just like hypercube, but uses a specific order of dimensions
- $\{ \text{dest} = 0 \Rightarrow \text{go up} \}$ or $\{ \text{xor} = 0 \Rightarrow \text{straight} \}$
- $\{ \text{dest} = 1 \Rightarrow \text{go down} \}$ or $\{ \text{xor} = 1 \Rightarrow \text{cross} \}$

Tree embeddings in butterfly (Slides 26-27)

- CBT rooted at each input
- CBT " " " output
Packet routing on butterfly

source \(y_{d-1} y_{d-2} \ldots x_0 \) \(\rightarrow \) \(y_{d-1} y_{d-2} \ldots y_0 \)

Route major to minor:

\(x_{d-1} x_{d-2} \ldots x_0 \)
\(y_{d-1} x_{d-2} \ldots x_0 \)
\(y_{d-1} y_{d-2} \ldots x_0 \)
\(y_{d-1} y_{d-2} \ldots y_0 \)

\(d \leq \lg n \) steps, but might have congestion!

\(n \) packets on \(n \)-input butterfly

What is worst-case perm?
- \(\sqrt{n} \) packets at sources \(x_1 x_2 x_3 x_4 \), go to dests \(0000 x_1 x_2 x_3 x_4 \)
All go through line \(00000000 \) halfway through network \(\Rightarrow \) congestion = \(\sqrt{n} \).

Beneš network (Slides 28–29)

Thm. Any \(n \)-perm can be routed (off-line) on an \(n \)-input Beneš with node-disjoint paths.

PF. Induction on \(n \).
Base \((N=2)\): \(\circ \circ \frac{\times}{\circ} \frac{\times}{\circ} \)

Inductive case (Slides 31–39) \(\Box \)

Corollary: A \(d \)-in, \(d \)-out Beneš network can simulate any \(n \)-node, degree-\(d \) network in \(O(\log (dn)) \) time. \(\Box \)

Bounded-degree \(\Rightarrow O(\log n) \) time

Beneš network is \(O(\log n) \)-universal for offline simulation of bounded-degree networks.
<< Analogy to universal Turing machines >>