General Layout Strategy

Tree of meshes (not mesh of trees)

\[T(n) : \]

\[N = n^2 \log n \]

\[n^2 \text{ leaves} \]

Area:

\[S(n) = 2S(n/2) + n \]

\[= \Theta(n \log n) \]

\[A(n) = \Theta(n^2 \log^2 n) \]
Fold and squash:

\[n^2 \times \log n \text{ layers } \Rightarrow \Theta(n^2 \log^2 n) \text{ area.} \]

Truncated TOM: \(\text{TOM}(n, k) \) - top \(k \) levels.

Area = \(\Theta(n^2 k^2) \)

Decomposition trees

\(T \) is a \((w_1, w_2, \ldots, w_r) \) decomposition tree for \(G = (V, E) \):

1. Vertices in \(V \) mapped to leaves of \(T \).
2. Edges in \(E \) run through links of \(T \).
3. Number of edges leaving subtree rooted at depth \(i \) is \(\leq w_i \)

For \(1 < x \leq 2 \), \(G \) has a \((w, x) \) decomposition tree if it has a \((w, w/\alpha, w/\alpha^2, \ldots, \alpha w) \) decomposition tree.

A decomposition tree is balanced if all subgraphs at the same depth have same number of vertices to within 2.
Layout strategy

1. Start with \((w, \sqrt{2})\) decomp tree.
2. Balance the decomp tree.
3. Embed the balanced tree in trunc TM.
4. Use trunc TM layout to yield \(O(w^2\log^2 n)\) area layout.

Balancing decomp trees

Warm-up: Necklace with black and white pearls.
How many cuts to divide into 2 sets, each with half the pearls of each color?

2 cuts suffice. Contingency argument.

Lemma: Consider any 2 strings composed of an even \# of black pearls and an even \# of white pearls. By making at most 2 cuts, the pearls can be partitioned into 2 sets, each containing 2 strings, such that each set has \(1/2\) the pearls of each color.

Pf. (Continuity arg.)
Lemma. Let T be a CBT drawn with n leaves on a straight line, and consider any set S of k consecutive leaves of T. Then, T has a forest F of complete binary subtrees of T such that:

1. $S = \{\text{leaves of } F\}$
2. at most 2 trees of F have any given height.
3. depth of largest tree in F is $\leq \lg k$.

Proof. F be forest of maximal CBT's whose leaves lie only in S. (1) & (3) follow. Use induction to prove (2). \(\Box\)

Theorem. Let G be a graph on n vertices that has a (w_1, w_2, \ldots, w_r) decomp. tree T. Then, G has a $(w_1', w_2', \ldots, w_r')$ balanced decomp. tree T', where

$$w_k' = \frac{1}{4} \sum_{k=i}^{r} w_k.$$

Proof. Color leaves of T: 1 = node of G, 0 = empty.

Recursively split B&W leaves evenly. Each stage has ≤ 2 strings of consec. leaves from T, each of which has ≤ 2 CBT's of a given height.
Total # wires leaving a string
\[w_i \leq \sum_{k=i}^{r} w_k \]

Corollary: A graph with a \((w, \alpha')\) decomp tree, \(\alpha\) const, has an \((O(w), \alpha)\) balanced decomp tree.

Proof. Sum is geometric:
\[w_i' = 4 \sum_{k=i}^{r} w_k \]
\[\leq 4 \sum_{k=i}^{r} \frac{w}{\alpha^{k-1}} \]
\[\leq 4w \frac{\alpha}{\alpha^i (\alpha - 1)} \]

Graph has \((4w/\alpha, \alpha)\) decomp tree.

Next week: Embed in trans TOM \(\Rightarrow\) layout,
Area-universal networks.

«Exam issues>>