6.897: Advanced Topics in Cryptography

Lecturer: Ran Canetti
Focus for first half (until Spring Break): Foundations of cryptographic protocols

Goal: Provide some theoretical foundations of secure cryptographic protocols:
• General notions of security
• Security-preserving protocol composition
• Some basic constructions

Overall:
Definitional and foundational slant
(but also constructions, and even some efficient ones…)
Notes

- Throughout, will try to stress conceptual points and considerations, and will spend less time on technical details.
- Please interrupt me and ask lots of questions – both easy and hard!
- The plan is only a plan, and is malleable…
Lecture plan

Lecture 1 (2/5/4): Overview of the course. The definitional framework of “classic” multiparty function evaluation (along the lines of [C00]): Motivation for the ideal-model paradigm. The basic definition.

Lecture 3 (2/12/4): Example: Casting Zero-Knowledge within the basic definitional framework. The Blum protocol for Graph Hamiltonicity. Composability of Zero-Knowledge.

Lecture 4 (2/13/4): The universally composable (UC) security framework: Motivation and the basic definition (based on [C01]).

Lectures 5,6 (2/19-20/4): No lecture (TCC)

Lecture 8 (2/27/4): UC commitments: Motivation. The ideal commitment functionality. Impossibility of realizations in the plain model. A protocol in the Common Reference String (CRS) model (based on [CF01]).

Lecture 10 (3/5/4): Secure realization of any multi-party functionality with any number of faults (based on [GMW87,G98,CLOS02]): The semi-honest case. (Static, adaptive, two-party, multi-party.)

Lecture 12 (3/12/4): UC signatures. Equivalence with existential unforgeability against chosen message attacks (as in [GMR88]). Usage for certification and authentication.

Lecture 13 (3/18/4): UC key-exchange and secure channels. (Based on [CK02]).

Lecture 14 (3/19/4): UC encryption and equivalence with security against adaptive chosen ciphertext attacks (CCA). Replayable CCA encryption. (Based on [CKN03].) Problem Set 2.
Scribe for today?
What do we want from a definition of security for a given task?

- Should be mathematically rigorous (i.e., should be well-defined how a protocol is modeled and whether a given protocol is “in” or “out”).
- Should provide an abstraction (“a primitive”) that matches our intuition for the requirements of the task.
- Should capture “all realistic attacks” in the expected execution environment.
- Should guarantee security when the primitive is needed elsewhere.
- Should not be over-restrictive.
- Should be based on the functionality of the candidate protocol, not on its structure.

Nice-to-haves:
- Ability to define multiple tasks within a single framework.
- Conceptual and technical simplicity.
What do we want from a definition of security for a given task?

• Should be mathematically rigorous (i.e., should be well-defined how a protocol is modeled and whether a given protocol is “in” or “out”).
• Should provide an abstraction (“a primitive”) that matches our intuition for the requirements of the task.
• Should capture “all realistic attacks” in the expected execution environment.
• Should guarantee security when the primitive is needed elsewhere.
• Should not be over-restrictive.
• Should be based on the functionality of the candidate protocol, not on its structure.
• Nice-to-haves:
 – Ability to define multiple tasks within a single framework.
 – Conceptual and technical simplicity.
What do we want from a definition of security for a given task?

• Should capture “all realistic attacks” in the expected execution environment. Issues include:
 – What are the network characteristics? (synchrony, reliability, etc.)
 – What are the capabilities of the attacker(s)? (controlling protocol participants? The communication links? In what ways?)
 – What are the possible inputs?
 – What other protocols are running in the same system?

• Should guarantee security when the primitive is needed elsewhere:
 – Take a protocol that assumes access to the “abstract primitive”, and let it work with a protocol that meets the definition. The overall behavior should remain unchanged.

 ➔ Some flavor of “secure composability” is needed already in the basic desiderata.
First candidate: The “classic” task of multiparty secure function evaluation

- We have:
 - n parties, $p_1 \ldots p_n$, $n > 1$, where each p_i has an input value x_i in D. Some of the parties may be corrupted. (Let’s restrict ourselves to static corruptions, for now.)
 - A probabilistic function $f: D^n \times R \rightarrow D^n$.
 - An underlying communication network

- Want to design a “secure” protocol where each p_i has output $f(x_1 \ldots x_n, r)_i$. That is, want:
 - Correctness: The honest parties get the correct function value of the parties’ inputs.
 - Secrecy: The corrupted parties learn nothing other than what is computable from their inputs and prescribed outputs.
Examples:

- \(F(x_1, \ldots, x_n) = x_1 + \ldots + x_n \)
- \(F(x_1, \ldots, x_n) = \max(x_1 + \ldots + x_n) \)
- \(F(-, \ldots, -) = r \leftarrow U \cdot D \)
- \(F((x_0, x_1), b) = (-, x_b) \) (b in \(\{0, 1\} \))
- \(F_R((x, w), -) = (-, (x, R(x, w))) \) (\(R(x, w) \) is a binary relation)

...

- But, cannot capture “reactive” tasks (e.g., commitment, signatures, public-key encryption...
How to formalize?

How to define correctness?

Question: Based on what input values for the corrupted parties should the function be computed?

(ie, recall: P_i should output $f(x_1 \ldots x_n, r_i)$. But what should be the x’s of the corrupted parties?)

- If we require that f is computed on input values fixed from above then we get an unrealizable definition.
- If we allow the corrupted parties to choose their inputs then we run into problems.

Example:

Function: $f(x_1, x_2) = (x_1 + x_2, x_1 + x_2)$.

Protocol: P_1 sends x_1 to P_2. P_2 sends $x_1 + x_2$ back.

The protocol is both “correct” and “secret”. But it’s not secure...

⇒ Need an “input independence” property, which blends secrecy and correctness...
How to formalize?

How to define secrecy?

An attempt: “It should be possible to generate the view of the corrupted parties given only their inputs and outputs.”

Counter example:

Function: \(F(-,-) = (r \leftarrow \mathbb{D},-) \)

Protocol: \(P_1 \) chooses \(r \leftarrow \mathbb{D} \), and sends \(r \) to \(P_2 \).

The protocol is clearly not secret (\(P_2 \) learns \(r \)). Yet, it is possible to generate \(P_2 \) ‘s view (it’s a random bit).

\(\Rightarrow \) Need to consider the outputs of the corrupted parties together with the outputs of the uncorrupted parties. That is, correctness and secrecy are again intertwined.
The general definitional approach
[Goldreich-Micali-Wigderson87]

‘A protocol is secure for some task if it “emulates” an “ideal setting” where the parties hand their inputs to a “trusted party”, who locally computes the desired outputs and hands them back to the parties.’

• Several formalizations exist (e.g. [Goldwasser-Levin90, Micali-Rogaway91, Beaver91, Canetti93, Pfitzmann-Waidner94, Canetti00, Dodis-Micali00,…])

• I’ll describe the formalization of [Canetti00]
 (in a somewhat different presentation).
Presenting the definition:

• Describe the model for protocol execution (the “real life model”).

• Describe the ideal process for evaluating a function with a trusted party.

• Describe the notion of “emulating an ideal process”.
I’ll describe the definition for the case of:

- Synchronous networks
- Active (Byzantine) adversary
- Static (non-adaptive) adversary
- Computational security (both adversary and distinguisher are polytime)
- Authenticated (but not secret) communication

Other cases can be inferred…
Some preliminaries:

• **Distribution ensembles:**

 A distribution ensemble \(D = \{D_{k,a}\} \) (\(k \) in \(\mathbb{N} \), \(a \) in \(\{0,1\}^* \)) is a sequence of distributions, one for each value of \(k,a \).
 We will only consider **binary ensembles**, i.e. ensembles where each \(D_{k,a} \) is over \(\{0,1\} \).

• **Relations between ensembles:**

 – **Equality:** \(D=D' \) if for all \(k,a \), \(D_{k,a} = D'_{k,a} \).

 – **Statistical closeness:** \(D\sim D' \) if for all \(c,d>0 \) there is a \(k_0 \) such that for all \(k>k_0 \) and all \(a \) with \(|a|<k^d \) we have
 \[
 \text{Prob}[x \leftarrow D_{k,a}, x=1] - \text{Prob}[x \leftarrow D'_{k,a}, x=1] < k^{-c}.
 \]

• **Multiparty functions:**

 An \(n \)-party function is a function \(f: \mathbb{N} \times \mathbb{R} \times (\{0,1\}^*)^{n+1} \rightarrow (\{0,1\}^*)^{n+1} \)
• **Interactive Turing machines (ITMs):**
 An ITM is a TM with some special tapes:
 – Incoming communication tape
 – Incoming subroutine output tape
 – Identity tape, security parameter tape

 An activation of an ITM is a computation until a “waiting” state is reached.

• **Polytime ITMs:**
 An ITM M is polytime if at any time the overall number of steps taken is polynomial in the security parameter plus the overall input length.

• **Systems of interacting ITMs (Fixed number of ITMs):**
 – A system of interacting ITMs is a set of ITMs, one of them the initial one, plus a set of “writing permissions”.
 – A Run of a system $(M_0 \ldots M_m)$:
 • The initial ITM M_0 starts with some external input.
 • In each activation an ITM may write to tapes of other ITMs.
 • The ITMs whose tapes are written to enter a queue to be activated next.
 • The output is the output of the initial ITM M_0.

• **Multiparty protocols:**
 An n-party protocol is a sequence of n ITMs, $P=(P_1 \ldots P_n)$.
The “real-life model” for protocol execution

A system of interacting ITMs:

• Participants:
 – An n-party protocol $P = (P_1 \ldots P_n)$. (any $n > 1$)
 – Adversary A, controlling a set B of “bad parties” in P.
 (ie, the bad parties run code provided by A)
 – Environment Z (the initial ITM)

• Computational process:
 – Z gets input z
 – Z gives A an input a and each good party P_i an input x_i
 – Until all parties of P halt do:
 • Good parties generate messages for current round.
 • A gets all messages and generates messages of bad parties.
 • A delivers the messages addressed to the good parties.
 – Before halting, A and all parties write their outputs on Z’s subroutine output tape.
 – Z generates an output bit b in $\{0,1\}$.
• Notation:
 - EXEC$_{P,A,Z}$ \((k,z,r)\) : output of \(Z\) after above interaction with \(P,A\), on input \(z\) and randomness \(r\) for the parties with s.p. \(k\).
 (\(r\) denotes randomness for all parties, ie, \(r= r_Z , r_A , r_1 \ldots r_n\).)
 - EXEC$_{P,A,Z}$ \((k,z)\) : The output distribution of \(Z\) after above interaction with \(P,A\), on input \(z\) and s.p. \(k\), and uniformly chosen randomness for the parties.
 - EXEC$_{P,A,Z}$:
 The ensemble of distributions \(\{\text{EXEC}_{P,A,Z} (k,z)\}\) \((k \text{ in } \mathbb{N}, z \text{ in } \{0,1\}^\ast)\)
The ideal process for evaluation of f:

Another system of interacting ITMs:

- **Participants:**
 - “Dummy parties” $P_1 \ldots P_n$.
 - Adversary S, controlling the “bad parties” P_i in B.
 - Environment Z.
 - A “trusted party” F for evaluating f.

- **Computational process:**
 - Z gets input z.
 - Z gives S an input a and each good party P_i an input x_i.
 - Good parties hand their inputs to F.
 - Bad parties send whatever S says. In addition, S sends its own input.
 - F evaluates f on the given inputs (tossing coins if necessary) and hands each party and S its function value. Good parties set their outputs to this value.
 - S and all parties write their outputs on Z’s subroutine output tape.
 - Z generates a bit b in $\{0,1\}$.
• Notation:

 – $\text{IDEAL}^{f}_{S,Z}(k,z,r)$: output of Z after above interaction with F,S, on input z and randomness r for the parties with s.p. k. (r denotes randomness for all parties, i.e., $r = r_Z, r_S, r_f$.)

 – $\text{IDEAL}^{f}_{S,Z}(k,z)$: The output distribution of Z after above interaction with f,S, on input z, s.p. k, and uniform randomness for the parties.

 – $\text{IDEAL}^{f}_{S,Z}$: The ensemble $\{\text{IDEAL}^{f}_{S,Z}(k,z)\}$ (k in \mathbb{N}, z in $\{0,1\}^*$)
• Notation:

 – Let B be a collection of subsets of $\{1..n\}$. An adversary is B-limited if the set B of parties it corrupts is in B.
Definition of security:

Protocol P_B-emulates the ideal process for f if for any B-limited adversary A there exists an adversary S such that for all Z we have:

$$\text{IDEAL}^f_{S,Z} \sim \text{EXEC}_{P,A,Z}.$$

In this case we say that protocol P_B-securely realizes f.

In other words: “Z cannot tell with more than negligible probability whether it is interacting with A and parties running P, or with S and the ideal process for f.”

Or: “whatever damage that A can do to the parties running the protocol can be done also in the ideal process.”
This implies:

- **Correctness**: For all inputs the good parties output the “correct function value” based on the provided inputs.
- **Secrecy**: Whatever A computes can be computed given only the prescribed outputs.
- **Input independence**: The inputs of the bad parties are chosen independently of the inputs of the good parties.
Equivalent formulations:

• Z outputs an arbitrary string (rather than one bit) and Z’s outputs of the two executions should be indistinguishable.

• Z, A are limited to be deterministic.

• Change order of quantifiers: S can depend on Z.
Variants

• Passive (semi-honest) adversaries: The corrupted parties continue running the original protocol.
• Secure channels, unauthenticated channels: Change the “real-life” model accordingly.
• Unconditional security: Allow Z, A to be computationally unbounded. (S should remain polynomial in Z,A,P, otherwise weird things happen…)
• Perfect security: Z’s outputs in the two runs should be identically distributed.
• Adaptive security: Both A and S can corrupt parties as the computation proceeds. Z learns about corruptions.

Some caveats:
– What information is disclosed upon corruption?
– For composability, A and Z can talk at each corruption.
On protocol composition

So far, we modeled “stand-alone security”:
• Only a single execution of a single protocol
• No other parties, no other network activity

What about security “in conjunction with other protocol executions”?
• Other executions of the same protocol?
• Other executions of arbitrary other protocols?
• “Intended” (coordinated) executions?
• “unintended” (uncoordinated) executions?
Examples

• Composition of instances of the same protocol:
 – With same inputs/different inputs
 – Same parties/different parties/different roles
 – Sequential, parallel, concurrent (either coordinated or uncoordinated).

• “Subroutine composition” (modular composition): protocol Q calls protocol P as subroutine.
 – Non-concurrent, Concurrent

• General composition: Running in the same system with arbitrary other protocols (arbitrary network activity), without coordination.

Is security maintained under these operations?
Examples

• Composition of instances of the same protocol:
 – With same inputs/different inputs
 – Same parties/different parties/different roles
 – Sequential, parallel, concurrent (either coordinated or uncoordinated).

• “Subroutine composition” (modular composition): protocol Q calls protocol P as subroutine.
 – Non-concurrent, Concurrent

• General composition: Running in the same system with arbitrary other protocols (arbitrary network activity), without coordination.

Is security maintained under these operations?
Modular composition: The basic idea
Towards the composition theorem

The hybrid model with ideal access to func. f (the f-hybrid model):

- Start with the real-life model of protocol execution.
- In addition, the parties have access to a trusted party F for f:
 - At pre-defined rounds, the protocol instructs all parties to send values to F.
 - F evaluates f on the given inputs and hands outputs to parties.
 - Once the outputs are obtained the parties proceed as usual.
- Notation: \(\text{EXEC}^f_{P,H,Z} \) is the ensemble describing the output of Z after interacting with protocol P and adversary H in the f-hybrid model.

Note:

- During the “ideal call rounds” no other computation takes place.
- Can generalize to a model where in each “ideal call round” a different function is being evaluated. But doesn’t really add power (can use a single universal functionality).
The composition operation: Modular composition

(Originates with [Micali-Rogaway91])

Start with:
• Protocol Q in the f-hybrid model
• Protocol P that securely realizes f

Construct the composed protocol Q^P:
• Each call to f is replaced with an invocation of P.
• The output of P is treated as the value of f.

Notes:
• In Q^P, there is at most one protocol active (ie, sending messages) at any point in time: When P is running, Q is suspended.
• It is important that in P all parties terminate the protocol at the same round. Otherwise the composition theorem does not work…
• If P is a protocol in the real-life model then so is Q^P. If P is a protocol in the f'-hybrid model for some function f', then so is Q^P.
The non-concurrent modular composition theorem:

Protocol Q^P “emulates” protocol Q. That is:
For any B-limited adversary A there is a B-limited adversary H
such that for any Z we have $\text{EXEC}^f_{Q,H,Z} \sim \text{EXEC}^f_{Qp,A,Z}$.

Corollary: If protocol Q t-securely realizes function f''
(in the f-hybrid model) then protocol Q^P t-securely realizes f''
(in the plain real-life model).
Proof outline:
Let’s restrict ourselves to one subroutine call.

We have a B-limited adversary A that interacts with protocol Q^P in the real-life model.

We want to construct an adversary H that interacts with protocol Q in the f-hybrid model such that no Z can tell the difference between the two interactions.

We proceed in three steps:
1. Out of A, we construct an adversary A_P that interacts only with protocol P.
2. From the security of P, there is an adversary S_P in the ideal process for f such that $\text{IDEAL}^f_{S_P,Z} \sim \text{EXEC}^f_{P,A,Z}$.
3. Out of A and S we construct adversary H, and show that $\text{EXEC}^f_{P,H,Z} \sim \text{EXEC}_{Q^P,A,Z}$.
Adversary A_P:

- Expect the input (coming from Z) to contain an internal state of A at the beginning of the round where protocol Q_P^P calls P. (If input is in the wrong format then halt.)
- Run A from this state, while interacting with parties running P.
- At the end of the run, output the current state of A.

From the security of P we have that there is an adversary S_P such that $\text{IDEAL}^f_{S_P,Z} \sim \text{EXEC}_{P,A,Z}$.

Note: Here it is important that the input of A_P is general and not only the inputs of the bad parties to the function.
Adversary H:

- Until the round where the parties in Q call f, run A. (Indeed, up to this point the two protocols are identical.)
- At the point where Q calls f, run S_P:
 - Play Z for S_P, and give it the current state of A as input.
 - When S_P generates f-inputs, forward these inputs to f.
 - Forward the outputs obtained from f to S_P.
- Once S_P generates its output, continue running A from the state that appears in the output of S_P.
- Halt when A halts, and output whatever A outputs.
Analysis of H:

Assume there is an environment Z that on input z distinguishes with some probability between a run of H with Q in the f-hybrid model and a run of A with Q^P in the plain real-life model.

Construct an environment Z_P that, on input z, distinguishes with the same probability between a run of S_P in the ideal process for f, and a run of A_P with P (in contradiction to the security of P).
Environment Z_P (on input z):

- Run Z on input z, and orchestrate for Z an interaction with parties running Q^P and with adversary A.
- At the round when P is called, start interacting with the external system:
 - Give to the external good parties the inputs that the simulated good parties would give to P.
 - Give the current state of A to the external adversary.
- When the external outputs are generated, continue the simulated interaction between A and the parties running Q^P: the good parties use their outputs from the external system as the outputs of P, and A runs from the state in the output of the external adversary.
- When the internal outputs are generated, hand them to Z and outputs whatever Z outputs.
Analysis of Z_P:

Can verify:

- If the “external system” that Z_P interacts with is an ideal process for f with adversary S_P then the simulated Z sees exactly an interaction with H and Q in the f-hybrid model.
- If the “external system” that Z_P interacts with is an execution of P with adversary A_P then the simulated Z sees exactly an interaction with A and Q^P in the plain real-life model.

Thus, Z_P distinguishes with the same probability that Z distinguishes.
Implication of the theorem

Can design and analyze protocols in a modular way:

– Partition a given task T to simpler sub-tasks $T_1 \ldots T_k$.
– Construct protocols for realizing $T_1 \ldots T_k$.
– Construct a protocol for T assuming ideal access to $T_1 \ldots T_k$.
– Use the composition theorem to obtain a protocol for T from scratch.

(Analogous to subroutine composition for correctness of programs, but with an added security guarantee.)