Outline

1 ΔΣ Basics
 1st-Order Modulator

2 Advanced ΔΣ
 High-Order ΔΣ Modulators
 Multi-bit and Multi-Stage Modulation

3 Bandpass ΔΣ Modulation

4 Example Bandpass ADC
1. ΔΣ Basics
CTMOD1: A 1st-Order Continuous-Time $\Delta\Sigma$ Modulator

- The input signal, U, is converted into a sequence of bits, $V \in (0,1)$.
Properties of CTMOD1

DC Inputs

• Integrator ensures that input current is exactly balanced by the (average) feedback current
 “Infinite resolution”

• Signals which alias to DC are rejected
 “Inherent anti-aliasing”
Non-ideal Effects in CTMOD1

- Component shifts
 \[R \rightarrow R + \Delta R \text{ or } I \rightarrow I + \Delta I \text{ merely changes full-scale.} \]
 \[C \rightarrow C + \Delta C \text{ scales the output of the integrator, but does not affect the comparator’s decisions.} \]

- Op-amp offset, input bias current, DAC imbalance
 All translate into a DC offset, which is unimportant in many communications applications.

- Comparator offset & hysteresis
 Overcome by integrator.

- Finite op-amp gain
 Creates “dead-bands.”
Non-ideal Effects (cont’d)

• DAC jitter
 Adds “noise.”

• Resistor nonlinearity (e.g. due to self-heating)
 Introduces distortion.

• DAC nonlinearity
 Introduces distortion and intermodulation of shaped quantization noise.

• Capacitor nonlinearity
 Irrelevant.

• Op-amp nonlinearity
 Same effects as DAC nonlinearity, but less severe.
CTMOD1 Model

- Normalize $R=1\Omega$, $C=1F$, $I=1A$, $F_s=1Hz$
 Full-scale range is $[0,1]V$.
- Assume comparator and DAC are delay-free
Waveforms/Timing

$u = 0.2$

Comparator Threshold

$v(0)$ $v(1)$ $v(2)$ $v(3)$ $v(4)$

$\bar{V} = \frac{1}{5}$
CTMOD1 @ 5% 1’s density

time, x1e-6 Seconds
CTMOD1 @ 10% 1’s density

Graph showing waveforms for l(r), l(ck), v(u), -v(yn), and -l(v) over time, x1e-6 Seconds.
CTMOD1 @ 51% 1’s density

time, x1e-6 Seconds
CTMOD1 @1/π 1’s density

time, x1e-6 Seconds
Analysis of CTMOD1

From the diagram:

\[y_c(n) = y_c(n-1) + \int_{n-1}^{n} (u_c(\tau) - v_c(\tau)) \, d\tau \]

1) Sample \(y_c \) at integer time and identify \(y(n) = y_c(n) \).

2) Observe that

\[\int_{n-1}^{n} v_c(\tau) \, d\tau = v(n-1) \]

3) Define \(u(n) = \int_{n-1}^{n} u_c(\tau) \, d\tau \)

Then

\[y(n) = y(n-1) + u(n) - v(n-1) \]

Also, from the diagram

\[v(n) = Q(y(n)) \]
CTMOD1 Equivalent

- CTMOD1 is the same as a discrete-time first-order modulator (MOD1) preceded by a sinc filter!
CTMOD1 NTF and STF

• The NTF is the same as MOD1:

\[\text{NTF}(z) = 1 - z^{-1} \]

• MOD1’s STF is 1, so the overall STF is just the TF of the prefilter:

\[\text{STF}(s) = \int_0^\infty e^{-st} g_p(t) \, dt \]

\[= \int_0^1 e^{-st} \, dt = \left(\frac{1 - e^{-s}}{s} \right) \]

\[= \left(\frac{1 - z^{-1}}{s} \right) \text{, where } z = e^s \]
Frequency Responses

- NTF
- STF
- Q. Noise Notch
- Inherent Anti-Aliasing

Frequency (Hz)

dB

0 1 2 3
CTMOD1 Spectra

\(u = 1/32 \)

\(u = \text{FS sine-wave} \)

Freq, x1e6 Hertz
Properties of MOD1

• Single-bit quantization yields “inherent linearity.”
 The DAC defines two points and two points can always be joined with a line. (Not so simple in continuous-time.)

• $0 \leq u \leq 1 \Rightarrow |y| \leq 1$
 MOD1 is stable for inputs all the way up to full-scale. The quantizer in MOD1 does not “overload.”

• Assuming the quantization error is white with power σ^2_e, the in-band noise power is

 $$N_0^2 \approx \frac{\pi^2 \sigma^2_e}{3(\text{OSR})^3}$$

 \sim12-bit performance at OSR=256.
 Doubling OSR reduces noise power by a factor of 8.
 “1.5 bits increase in SNR per octave increase in OSR”
MOD1 Properties (cont’d)

• DC input $u = \frac{a}{b}$ results in period-b behavior.
 The spectrum of the error is not white! Spectrum
 consists of a finite set of harmonics of f_s/b.
• Irrational DC inputs result in aperiodic behavior.
 Nonetheless, the spectrum of the error is still
discrete!
 Spectrum consists of an infinite number of tones
 with frequencies that are irrational fractions of f_s.
• Finite op-amp gain shifts NTF zero inside the
 unit circle and allows a range of u values to
 produce the same limit cycle.
 Worst case is around $u = 0, 1, \frac{1}{2}$ etc.;
 yields “dead bands.”
• The behavior of MOD1 is erratic.
2. Advanced $\Delta \Sigma$
A Single-Loop δΣ Modulator

\[Y = L_0 U + L_1 V \]
\[V = Y + E \]

\[V = G U + H E, \text{ where} \]
\[H = \frac{1}{1 - L_1} \quad \& \quad G = L_0 H \]

Inverse Relations:
\[L_1 = 1 - \frac{1}{H}, \quad L_0 = \frac{G}{H} \]

- The zeros in \(H \) come from the poles in \(L_1 \)
A 5th-Order Lowpass NTF
Zeros optimized for OSR=32

- Pole/Zero diagram:

OSR = 32;
H = synthesizeNTF(5, OSR, 1);
...

Zeros spread across the band-of-interest to minimize the rms value of the NTF.
Poles such that \(||H|| = 1.5.||\)
Example: 5^{th}-Order Modulator

- **Time (sample number)**
- **Normalized Frequency ($1 \rightarrow f_s$)**
- **dBFS**

NBW = 1.8 \times 10^{-4} \, f_s
(8K-Point FFT)
SQNR Limits for Binary Modulators

![Graph showing SQNR limits for binary modulators with different OSR values. The graph plots Peak SQNR (dB) against OSR, with lines indicating different values of N (2, 3, 4, 5, 6, 7, 8) and their corresponding peak SQNR values.]

- N = 2
- N = 3
- N = 4
- N = 5
- N = 6
- N = 7
- N = 8
Multi-Bit Quantization

Toolbox Conventions

• Single-bit quantizer output interpreted as \(\pm 1 \) instead of 0,1.

 Quantizer step size, \(\Delta \), is 2; input range is \([-1,+1]\).

• Convention for multi-bit quantization is:

\[
\Delta = 2; \text{ # of Q. levels is } n\text{lev} = M+1, \text{ from } -M \text{ to } +M; \\
\text{no-overload range (} |e| \leq 1\text{) is } -n\text{lev} \text{ to } +n\text{lev}.\]
SQNR Limits for 3-bit Modulators
Theoretical SNR Limits for Multi-Bit Modulators

$\|H\|_\infty$ is the max. gain of the NTF over all frequencies.

\begin{align*}
H_{\infty}^8 &= 32 \\
H_{\infty}^4 &= 16 \\
H_{\infty}^2 &= 8 \\
H_{\infty} &= 4 \\
\|H\|_\infty &= 2
\end{align*}

SNR (dB) @ OSR = 8 with 1 LSB (peak) input

Total RMS Noise Power (LSBs)
Multi-Bit Quantization

Pros and Cons

- Multi-bit quantization overcomes stability-induced restrictions on the NTF
 Dramatic improvements are possible!

- Multi-bit quantization loses the inherent linearity property of a binary DAC
 DAC levels are not evenly spaced and so cannot be joined with a straight line.
 DAC errors are effectively added to the input, and thus are not shaped.
 Can be overcome with calibration, digital correction or mismatch-shaping.
Digital Correction

- Lookup table contains the digital equivalent of each DAC level
 In practice, the look-up table only needs to store the differences between the actual and ideal DAC levels.
- Thus $v_{\text{dig}} = v_{\text{dac}}$, so DAC errors are now shaped by the loop!
Mismatch-Shaping

- Shapes mismatch-induced noise by ensuring that each element in a unit-element DAC is driven by a shaped sequence

Two popular forms of mismatch-shaping are **element-rotation** and **element-swapping**.
Multi-Stage Modulation

\[v = \text{filter}([0, 2, -1], 1, v1) + 4 \times \text{filter}([1, -2, 1], 1, v2); \]

\[G = z^{-1}, \quad H = (1 - z^{-1})^2 \]

Composite NTF is \(4H^2\)
Toolbox Summary

http://www.mathworks.com/matlabcentral/fileexchange/

Click on Control Systems, then delsig

- Specify OSR, lowpass/bandpass, no. of Q. levels.
- NTF (and STF) available.
 - synthesizeNTF
 - realizeNTF
 - predictSNR, simulateDSM, simulateSNR

Parameters for a specific topology.
- calculateTF
- stuffABCD
- mapABCD
- ABCD: state-space description of the modulator.
 - scaleABCD
 - findPIS, find2dPIS

Time-domain simulation and SNR measurements.

Also:
- designLCPB
- designHBF
- simulateESL...

Convex positive invariant set.
3. Bandpass $\Delta \Sigma$
A Bandpass $\Delta\Sigma$ ADC

- Like a lowpass $\Delta\Sigma$ ADC, a bandpass $\Delta\Sigma$ ADC converts its analog input into a bit-stream. The output bit-stream is essentially equal to the input in the band of interest.

- A digital filter removes out-of-band noise and mixes the signal to baseband.
BPΔΣ Perspective #1
It is just Filtering and Feedback

- Putting the poles of the loop filter at ω_0 forces H to have zeros at ω_0
- Example system diagram:
BPΔΣ Perspective #2
It is just the result of an “N-Path Transformation”

• \(z \rightarrow -z^2 \) (a “pseudo 2-path transformation”) applied to \(H(z) = 1 - z^{-1} \) yields \(H'(z) = 1 + z^{-2} \)

• This transformation can be applied to any system that processes DT signals, including SC filters, digital filters, ΔΣ modulators and even mismatch-shaping logic

 By replacing the state storage elements (registers), or by interleaving two copies of the original system and negating alternate inputs and outputs
BPΔΣ Perspective #3

It is something New and Valuable

- **BPΔΣ** offers a way to make a “tuned” ADC
 Possibly the only way.
 Ideally-suited to narrowband systems, i.e. radios.

- **BPΔΣ** keeps the signal away from 1/f noise as well as low-frequency distortion products
 Like regular narrowband bandpass systems, second-harmonic distortion is not problematic.
A 6th-Order Bandpass NTF

- Pole/Zero diagram:

```plaintext
OSR = 64;
f0 = 1/6;
H=synthesizeNTF(6,OSR,1,[],f0);...
```
Example Waveform
8th-Order $f_s/8$ Bandpass Modulator
Example Spectrum
8^{th}-Order $f_s/8$ Bandpass Modulator

SQNR = 100 dB
@ OSR = 64

$NBW = 1.8 \times 10^{-4} f_s$
Bandpass Modulator Structure

- The loop filter consists of a cascade of resonators
 The resonance frequencies determine the poles of the loop filter and hence the zeros of the NTF.
- Multibit and multistage variants are also possible
4. Design Example
A Dual-Conversion Superheterodyne Receiver

- A bandpass ADC fits naturally into this narrowband system
 Perfect I/Q, high dynamic range. Low power?

- RF 50-2000 MHz
- 1st IF 10-300 MHz
- 2nd IF 2-4 MHz
- Sample Rate 10-750 ksp
System Partitioning

- Goal: a general-purpose, high-performance, low-power back-end
Traditional Implementation

Numerous high-dynamic range blocks
Noise and power budgets are very tight
Large VGA range needed
Eliminating the AAF with a Continuous-Time BP $\Sigma\Delta$ ADC

- Anti-alias filtering is inherent
- But still need a low-noise, linear V-I converter
Eliminating the Input g_m

The output of the mixer is available in current form, so …
Merge ADC with Mixer!

- Eliminates redundant I-V & V-I conversion
- Gives mixer and IDAC more headroom

ADC input is a current!

No DC drop!

TO/FROM ADC BACKEND

- LNA
- V-I CONVERTER
- ADC
- MIXER

IF_1
LO_2
Merge ADC with Mixer!

LC tank effectively adds gain, without adding noise, adding distortion or consuming power.
Noise in the ADC backend is attenuated by g_m times the tank impedance.

In this work, $g_m \approx 10 \text{ mA/V}$
\[Z_{\text{eff}} \]

- Near resonance, \(|Z_L| = |Z_C| \)
 \(|Z_{L,C}| \approx 300 \Omega \) in this design

- At resonance, \(|Z| \approx Q \cdot |Z_{L,C}| \)
 About 6k\(\Omega \) for \(Q = 20 \) \(\Rightarrow g_mZ \approx 60 \).

- More generally, the effective tank impedance is found by integrating the input-referred noise over the band of interest:

\[
\int \left(\frac{v_n}{g_mZ(\omega)} \right)^2 d\omega = \left(\frac{v_n}{g_m} \right)^2 \int Y(\omega)^2 d\omega = \left(\frac{v_n}{g_mZ_{\text{eff}}} \right)^2
\]

\(\Rightarrow Z_{\text{eff}} = (Y_{\text{rms}})^{-1} \)
- $Q = 20$ reduces Z_{eff} by about 4 dB
Tuning the LC Tank

- $\Delta f_0/f_0 = 2\% \Rightarrow 3$ dB reduction in Z_{eff}

Inductor accuracy is 10%, so tuning is required

Make an oscillator:

![Diagram of LC tank with off-chip tank, capacitance array, and negative-g_m]

- Off-chip tank
- Capacitance array
- Negative-g_m
Remainder of ADC?

- Add resonator stages until the quantization noise of the flash is low enough
Second Resonator?

- **LC**: Needs more external components plus associated pins
- **Active-RC**: 2 mA for 50 nV/√Hz input-referred noise
- **Switched-Cap**: est. >10 mA for same noise
Third Resonator?

- **Active-RC**: $Q \approx 10 \implies$ Need 4th resonator
- **Switched-Cap**: Q is high & drift is low;
 <1 mA for 300 nV/ $\sqrt{\text{Hz}}$ i.r.n.
Complete ADC

- Eliminates high-power VGA & AAF
 2/3 of the total power used by LNA, Mixer & IDAC
- Uses cts-time and discrete-time elements, plus multi-bit quantization and mismatch-shaping
ADC in More Detail

- Can save power under small-signal conditions by reducing IDAC’s full-scale
 By a factor of 4, in this ADC

\[f_{CLK} = 9-36 \text{ MHz} \]
\[\text{OSR} = 48 \text{ to } 960 \]
Noise vs. Full-Scale

Input-Reflected Noise (dB relative to a 300Ω resistor)

Full-Scale

-30 dBm 50 mVpp

-18 dBm 200 mVpp

Total

LNA/Mixer

RC

IDAC Mismatch

IDAC Thermal

Quantization

SC
Measured STF & NTF

Measured STF

NTF (scaled)

PSD

$f_0 = \frac{f_{\text{CLK}}}{8}$

$\text{NBW} = 5.9 \text{ kHz}$

$f_{\text{CLK}} = 32 \text{ MHz}$
In-Band Spectrum (OSR=48)

SNR = 81 dB

SFDR = 103 dB

BW = 270 kHz

NBW = 200 Hz

f_{IF1} = 103 MHz
f_{CLK} = 26 MHz
In-Band Spectrum (OSR=900)

SNR = 92 dB
SFDR = 106 dB

f_{IF1} = 73 MHz
f_{CLK} = 36 MHz

-125 dBc/Hz @ 1 kHz offset
NBW = 15 Hz
SNR vs. Input Power

FS range: −30 to −18 dBm
DR = 90 dB

f_{IF1} = 273 MHz
f_{CLK} = 32 MHz

OSR = 900

OSR = 48
Architectural Highlights

- Merging a mixer with a continuous-time bandpass ADC containing an LC tank yields a flexible, high-performance, low-power receiver backend.

- Performing a component-count/performance/power trade-off in each resonator section results in a multi-bit, hybrid continuous-time/discrete-time architecture.

- A variable full-scale saves power and reduces noise.
Performance Summary

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>5 - 375</td>
<td>kHz</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>10-300</td>
<td>MHz</td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>9 - 36</td>
<td>MHz</td>
</tr>
<tr>
<td>Full-Scale Range</td>
<td>12</td>
<td>dB</td>
</tr>
<tr>
<td>Die Area</td>
<td>5</td>
<td>mm²</td>
</tr>
</tbody>
</table>

@ $f_{\text{IF}} = 73\text{MHz}$, $BW = 333\text{kHz}$, $f_{\text{CLK}} = 32\text{MHz}$, $VDD = 3\text{V}$:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Range</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>16.5</td>
<td>mA</td>
</tr>
<tr>
<td>Noise Figure @ min FS</td>
<td>9</td>
<td>dB</td>
</tr>
<tr>
<td>IIP3</td>
<td>0</td>
<td>dBm</td>
</tr>
</tbody>
</table>
Bandpass $\Delta \Sigma$ ADCs

![Graph showing dynamic range vs. bandwidth for various studies.](image-url)
Summary

• $\Delta\Sigma$ is fun
 All kinds of exotic behavior: limit-cycles, dead-bands
 sub-harmonic locking and even chaotic dynamics!

• $\Delta\Sigma$ is a rich field
 ADCs and DACs; Single-bit and Multi-bit; Single-
 stage and Multi-stage; Lowpass and Bandpass;
 Discrete-time and Continuous-time…

• A bandpass $\Delta\Sigma$ ADC converts an IF signal into
digital form and can do so with high dynamic
range and low power consumption
 With wideband or tunable modulators, conversion of
RF to digital may soon be feasible.
ADC = “Antenna to Digital Converter”