Narrowband LNA Design for Wireless Systems

- **Design Issues**
 - Noise Figure – impacts receiver sensitivity
 - Linearity (IIP3) – impacts receiver blocking performance
 - Gain – high gain reduces impact of noise from components that follow the LNA (such as the mixer)
 - Power match – want $Z_{in} = Z_o$ (usually = 50 Ohms)
 - Power – want low power dissipation
 - Bandwidth – need to pass the entire RF band for the intended radio application (i.e., all of the relevant channels)
 - Sensitivity to process/temp variations – need to make it manufacturable in high volume
Our Focus in This Lecture

- Designing for low Noise Figure
- Achieving a good power match
- Hints at getting good IIP3
- Impact of power dissipation on design
- Tradeoff in gain versus bandwidth
Our Focus: Inductor Degenerated Amp

- Same as amp in Lecture 7 except for inductor degeneration
- Note that noise analysis in Tom Lee’s book does not include inductor degeneration (i.e., Table 11.1)
Recall Small Signal Model for Noise Calculations

\[\frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \left(|\eta|^2 + 2 \Re \{ c \chi_d \eta^* Z_{gs} \} + \chi_d^2 |Z_{gs}|^2 \right) \]

where:

\[\frac{i_{nd}^2}{\Delta f} = 4kT \gamma g_{do}, \quad \chi_d = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}}, \quad Z_{gs} = wC_{gs}Z_{gs} \]

\[Z_{gs} = \frac{1}{sC_{gs}} \left| \frac{Z_{deg} + Z_g}{1 + g_m Z_{deg}} \right| \]

\[\eta = 1 - \left(\frac{g_m Z_{deg}}{Z_{deg} + Z_g} \right) Z_{gs} \]
Key Assumption: Design for Power Match

- **Input impedance (from Lec 6)**

\[
Z_{in}(s) = \frac{1}{sC_{gs}} + s(L_{deg} + L_g) + \frac{g_m}{C_{gs}}L_{deg}
\]

Real!

- **Set to achieve pure resistance = \(R_s\) at frequency \(\omega_o\)**

\[
\Rightarrow \frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = \omega_o, \quad \frac{g_m}{C_{gs}}L_{deg} = R_s
\]
Process and Topology Parameters for Noise Calculation

- Process parameters
 - For 0.18μ CMOS, we will assume the following

\[
c = -j0.55, \quad \gamma = 3, \quad \delta = 2\gamma = 6, \quad \frac{g_m}{g_{do}} = \frac{1}{2} \quad \Rightarrow \quad \chi_d = 0.32
\]

- Circuit topology parameters \(Z_g \) and \(Z_{deg} \)

\[
Z_g = R_s + j\omega L_g, \quad Z_{deg} = j\omega L_{deg}
\]
Calculation of Z_{gs}

\[
Z_{gs} = \frac{1}{sC_{gs}} \left| \frac{Z_{deg} + Z_g}{1 + g_m Z_{deg}} \right| = \frac{1}{j\omega C_{gs}} \left| \frac{j\omega (L_{deg} + L_g) + R_s}{1 + g_m j\omega L_{deg}} \right|
\]

\[
= \frac{j\omega (L_{deg} + L_g) + R_s}{1 - \omega^2 C_{gs} (L_{deg} + L_s) + j\omega (g_m L_{deg} + R_s C_{gs})}
\]

\[
= \frac{j\omega (L_{deg} + L_g) + R_s}{j\omega (g_m L_{deg} + R_s C_{gs})}
\]
Calculation of η

\[
\eta = 1 - \left(\frac{g_m Z_{\text{deg}}}{Z_{\text{deg}} + Z_g} \right) Z_{gs} = 1 - \frac{g_m j\omega_0 L_{\text{deg}}}{j\omega_0 (g_m L_{\text{deg}} + R_s C_{gs})} Z_{gs}
\]

\[
= 1 - \frac{g_m j\omega_0 L_{\text{deg}}}{j\omega_0 (g_m L_{\text{deg}} + R_s C_{gs})} = 1 - \frac{(g_m/C_{gs}) L_{\text{deg}}}{(g_m/C_{gs}) L_{\text{deg}} + R_s}
\]

\[
= 1 - \frac{R_s}{R_s + R_s} = \frac{1}{2}
\]
Calculation of Z_{gsw}

- **By definition**

 \[Z_{gsw} = w_o C_{gs} Z_{gs} \]

 \[
 Q = \frac{1}{w_o C_{gs} 2R_s} = \frac{w_o (L_g + L_{deg})}{2R_s}
 \]

- **Calculation**

 \[
 Z_{gsw} = w_o C_{gs} \frac{jw_o (L_{deg} + L_g) + R_s}{jw_o (g_m L_{deg} + R_s C_{gs})}
 \]

 \[
 = \frac{jw_o^2 C_{gs} (L_{deg} + L_g) + w_o C_{gs} R_s}{jw_o (g_m L_{deg} + R_s C_{gs})}
 \]

 \[
 = \frac{j1 + 1/(2Q)}{jw_o (g_m L_{deg} + R_s C_{gs})}
 \]

 \[
 = \frac{j1 + 1/(2Q)}{jw_o C_{gs} ((g_m / C_{gs}) L_{deg} + R_s)}
 \]

 \[
 = \frac{j1 + 1/(2Q)}{jw_o C_{gs} (R_s + R_s)} = \frac{j1 + 1/(2Q)}{j1/Q} = \frac{1}{2} (2Q - j)
 \]
Calculation of Output Current Noise

Step 3: Plug in values to noise expression for \(i_{ndg} \)

\[
\frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \left(|\eta|^2 + 2 \Re \left\{ -j|c|\chi_d \eta^* Z_{gsw} \right\} + \chi_d^2 |Z_{gsw}|^2 \right)
\]

where \(\eta = \frac{1}{2}, \quad Z_{gsw} = \frac{1}{2}(2Q - j) \)

\[
\Rightarrow \frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \left(\frac{1}{4} + 2 \Re \left\{ -j|c|\chi_d \frac{1}{4} (2Q - j) \right\} + \chi_d^2 \frac{1}{4} |2Q - j|^2 \right)
\]

\[
= \frac{i_{nd}^2}{\Delta f} \frac{1}{4} \left(1 - 2|c|\chi_d + \chi_d^2 (4Q^2 + 1) \right)
\]
From Lecture 7, we derived for $L_{\text{deg}} = 0$, $\omega_0^2 = 1/(L_g C_{gs})$

$$\frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \left(1 - 2|c|\chi_d + \chi_d^2 (Q^2 + 1) \right)$$

We now have for $(g_m/C_{gs})L_{\text{deg}} = R_s$, $\omega_0^2 = 1/((L_g + L_{\text{deg}})C_{gs})$

$$\frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \frac{1}{4} \left(1 - 2|c|\chi_d + \chi_d^2 (4Q^2 + 1) \right)$$
Recall the alternate expression for Noise Factor derived in Lecture 8

\[
F = \frac{\text{total output noise power}}{\text{output noise due to input source}} = \frac{i_{\text{nout(tot)}}^2}{i_{\text{nout(in)}}^2}
\]

We now know the output noise due to the transistor noise

- We need to determine the output noise due to the source resistance
Output Noise Due to Source Resistance

\[Z_{in} = \frac{1}{j\omega C_{gs}} + j\omega (L_{deg} + L_g) + \frac{g_m}{C_{gs}} L_{deg} = R_s \]

\[\Rightarrow v_{gs} = \frac{\bar{e}_{ns}}{R_s + Z_{in}} \left(\frac{1}{j\omega C_{gs}} \right) = \frac{\bar{e}_{ns}}{2R_s} \left(\frac{1}{j\omega C_{gs}} \right) = \left(\frac{Q}{j} \right) \bar{e}_{ns} \]

\[\Rightarrow i_{nout} = g_m \left(\frac{Q}{j} \right) \bar{e}_{ns} \]

\[\Rightarrow \bar{i}_{nout}^2 = (g_mQ)^2 \bar{e}_{ns}^2 \]
Noise Factor for Inductor Degenerated Amplifier

\[
\text{Noise Factor} = \frac{(g_m Q)^2 e_{ns}^2 + \frac{i_{ndg}^2}{\Delta f}}{(g_m Q)^2 e_{ns}^2} = 1 + \frac{i_{ndg}^2/\Delta f}{(g_m Q)^2 e_{ns}^2}
\]

\[
= 1 + \frac{4kT \gamma g_{do}(1/4)(1 - 2|c|\chi_d + \chi_d^2(4Q^2 + 1))}{(g_m Q)^2 4kT R_s}
\]

\[
= 1 + \left(\frac{1}{g_m Q R_s}\right)^\gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{4Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)
\]

\[
= 1 + \left(\frac{2\omega_o R_s C_{gs}}{g_m R_s}\right)^\gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{4Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)
\]

\[
= 1 + \left(\frac{\omega_o}{\omega_t}\right)^\gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)
\]

Noise Factor scaling coefficient
Noise Factor Scaling Coefficient Versus Q

Achievable values as a function of Q under the constraints that

$$\frac{1}{\sqrt{(L_g + L_{\text{deg}})C_{gs}}} = \omega_0$$

$$\frac{g_m}{C_{gs}} L_{\text{deg}} = R_s$$

Note:

$$Q = \frac{1}{2R_s \omega_0 C_{gs}}$$
Suppose we desire to build a narrowband LNA with center frequency of 1.8 GHz in 0.18\(\mu\) CMOS (\(c=-j0.55\))
- From Hspice – at \(V_{gs} = 1\) V with NMOS (\(W=1.8\)\(\mu\), \(L=0.18\)\(\mu\))
 - measured \(g_m = 871\) \(\mu\)S, \(C_{gs} = 2.9\) fF

\[
\Rightarrow W_t \approx \frac{g_m}{C_{gs}} = \frac{871 \times 10^{-6}}{2.9 \times 10^{-15}} = 2\pi(47.8 GHz)
\]

\[
\Rightarrow \frac{\omega_o}{\omega_t} = \frac{2\pi 1.8e9}{2\pi 47.8e9} \approx \frac{1}{26.6}
\]

- Looking at previous curve, with \(Q \approx 2\) we achieve a Noise Factor scaling coefficient \(\approx 3.5\)

\[
\Rightarrow \text{Noise Factor} \approx 1 + \frac{1}{26.6} 3.5 \approx 1.13
\]

\[
\Rightarrow \text{Noise Figure} = 10\log(1.13) \approx 0.53\ dB
\]
Component Values for Minimum NF with Power Match

- Assume $R_s = 50$ Ohms, $Q = 2$, $f_o = 1.8$ GHz, $f_t = 47.8$ GHz
 - C_{gs} calculated as
 \[Q = \frac{1}{2R_s w_o C_{gs}} \]
 \[\Rightarrow C_{gs} = \frac{1}{2R_s w_o Q} = \frac{1}{2(50)2\pi 1.8\times10^9(2)} = 442fF \]
 - L_{deg} calculated as
 \[\frac{g_m}{C_{gs}} L_{deg} = R_s \Rightarrow L_{deg} = \frac{R_s}{w_t} = \frac{50}{2\pi 47.8\times10^9} = 0.17nH \]
 - L_g calculated as
 \[\frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o \Rightarrow L_g = \frac{1}{w_o^2 C_{gs}} - L_{deg} \]
 \[\Rightarrow L_g = \frac{1}{(2\pi 1.8\times10^9)^2 442\times10^{-15}} - 0.17\times10^{-9} = 17.5nH \]
Have We Chosen the Correct Bias Point? \((V_{gs} = 1V)\)

- **Note:** IIP3 is also a function of Q
Calculation of Bias Current for Example Design

- Calculate current density from previous plot

\[V_{gs} = 1V \Rightarrow I_{dens} \approx 175 \mu A/\mu m \]

- Calculate W from Hspice simulation (assume L=0.18 \(\mu m \))

\[C_{gs} = 2.9 fF \text{ for } W = 1.8 \mu m \Rightarrow W = \frac{442 fF}{2.9 fF} \cdot 1.8 \mu m \approx 274 \mu m \]

- Could also compute this based on \(C_{ox} \) value

- Calculate bias current

\[I_{bias} = I_{dens} W = (175 \mu A/\mu m)(274 \mu m) \approx 48 mA \]

- Problem: this is not low power!!
We Have Two “Handles” to Lower Power Dissipation

- **Key formulas**
 \[I_{bias} = I_{den} W \]
 \[F = 1 + \left(\frac{w_o}{w_t} \right) \gamma \left(\frac{g_{do}}{g_m} \right) \frac{1}{2Q} \left(1 - 2|c| \chi_d + (4Q^2 + 1) \chi_d^2 \right) \]

- **Lower current density, I_{den}**
 - **Benefits**
 \[\Rightarrow \text{lower power, lower} \frac{g_{do}}{g_m} \text{ ratio} \]
 - **Negatives**
 \[\Rightarrow \text{lower IIP3, lower} f_t \]

- **Lower W**
 - **Benefit:** lower power
 - **Negatives**
 \[\Rightarrow \text{lower} C_{gs} = \frac{2}{3} W L C_{ox} \Rightarrow \text{higher} Q = \frac{1}{w_o C_{gs} 2 R_s} \]
 \[\Rightarrow \text{higher} F \text{ (and higher inductor values)} \]
First Step in Redesign – Lower Current Density, I_{den}

- New bias point is $V_{gs} = 0.8$ V

- Need to verify that IIP3 still OK (once we know Q)
Recalculate Process Parameters

- Assume that the only thing that changes is $\frac{g_m}{g_{do}}$ and f_t
 - From previous graph ($I_{den} = 100 \ \mu A/\mu m$)

$$\frac{g_m}{g_{do}} \approx \frac{.78}{1.15} \approx 0.68 \ \Rightarrow \ \chi_d = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}} = 0.63 \sqrt{\frac{2}{5}} \approx 0.43$$

$$w_t \approx \frac{g_m}{C_{gs}} \approx \frac{0.78mS}{2.9fF} = (2\pi)42.8\text{GHz}$$

- We now need to replot the Noise Factor scaling coefficient
 - Also plot over a wider range of Q

$$F = 1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)$$

Noise Factor scaling coefficient
Achievable values as a function of Q under the constraints that:

\[
\frac{1}{\sqrt{(L_g + L_{\text{deg}})C_{gs}}} = w_0
\]

\[
\frac{g_m}{C_{gs}} L_{\text{deg}} = R_s
\]

Note:

\[
Q = \frac{1}{2R_s w_0 C_{gs}}
\]
Second Step in Redesign – Lower W

- **Recall**
 \[C_{gs} = \frac{2}{3} W L C_{ox}, \quad Q = \frac{1}{w_o C_{gs} 2 R_s} \]

- **\(I_{\text{bias}} \)** can be related to \(Q \) as
 \[I_{\text{bias}} = I_{\text{den}} W = I_{\text{den}} \frac{3}{2 L C_{ox}} C_{gs} = I_{\text{den}} \frac{3}{2 L C_{ox} w_o 2 R_s Q} \]
 \[\Rightarrow I_{\text{bias}} \propto \frac{1}{Q} \]

- **We previously chose \(Q = 2 \), let’s now choose \(Q = 6 \)**
 - Cuts power dissipation by a factor of 3!
 - New value of \(W \) is one third the old one

 \[\Rightarrow W = \frac{274 f F}{3} \approx 91 \mu m \]
Power Dissipation and Noise Figure of New Design

- **Power dissipation**

\[I_{\text{bias}} = I_{\text{den}} W = (100 \mu A/\mu m)(91 \mu m) = 9.1 mA \]

- At 1.8 V supply

\[\Rightarrow \text{Power} = (9.1 mA)(1.8V) = 16.4 mW \]

- **Noise Figure**

 - \(f_t \) previously calculated, get scaling coeff. from plot

\[\frac{w_o}{w_t} = \frac{2\pi 1.8e9}{2\pi 42.8e9} \approx \frac{1}{23.8}, \text{ scaling coeff. } \approx 10 \]

\[\Rightarrow \text{Noise Factor} \approx 1 + \frac{1}{23.8} 10 \approx 1.42 \]

\[\Rightarrow \text{Noise Figure} = 10 \log(1.42) \approx 1.52 dB \]
Updated Component Values

- Assume $R_s = 50\ \text{Ohms}$, $Q = 6$, $f_o = 1.8\ \text{GHz}$, $f_t = 42.8\ \text{GHz}$

 - C_{gs} calculated as
 \[
 Q = \frac{1}{2R_s w_o C_{gs}}
 \]
 \[
 \Rightarrow C_{gs} = \frac{1}{2R_s w_o Q} = \frac{1}{2(50)2\pi 1.8e9(6)} \approx 147\ fF
 \]

 - L_{deg} calculated as
 \[
 \frac{g_m}{C_{gs}} L_{deg} = R_s \Rightarrow L_{deg} = \frac{R_s}{w_t} = \frac{50}{2\pi 42.8e9} = 0.19\ nH
 \]

 - L_g calculated as
 \[
 \frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o \Rightarrow L_g = \frac{1}{w_o^2 C_{gs}} - L_{deg}
 \]
 \[
 \Rightarrow L_g = \frac{1}{(2\pi 1.8e9)^2 147e-15} - 0.19e-9 = 53\ nH
 \]
Inclusion of Load (Resonant Tank)

- Add output load to achieve voltage gain
 - Note: in practice, use cascode device
 - We’re ignoring C_{gd} in this analysis
Calculation of Gain

- Assume load tank resonates at frequency w_o

- Assume $Z_{in} = R_s$

$$\Rightarrow \quad v_{gs} = \frac{v_{in}}{2R_s} \left(\frac{1}{jw_oC_{gs}} \right) = \left(\frac{Q}{j} \right) v_{in}$$

$$\Rightarrow \quad i_{out} = g_m \left(\frac{Q}{j} \right) v_{in} \quad \Rightarrow \quad v_{out} = -g_m R_L \left(\frac{Q}{j} \right) v_{in}$$
Setting of Gain

\[|\text{Gain}| = g_m R_L Q \]

- Parameters \(g_m \) and \(Q \) were set by Noise Figure and IIP3 considerations
 - Note that \(Q \) is of the input matching network, not the amplifier load
- \(R_L \) is the free parameter – use it to set the desired gain
 - Note that higher \(R_L \) for a given resonant frequency and capacitive load will increase \(Q_L \) (i.e., \(Q \) of the amplifier load)
 - There is a tradeoff between amplifier bandwidth and gain
 - Generally set \(R_L \) according to overall receiver noise and IIP3 requirements (higher gain is better for noise)
 - Very large gain (i.e., high \(Q_L \)) is generally avoided to minimize sensitivity to process/temp variations that will shift the center frequency
The Issue of Package Parasitics

- Bondwire (and package) inductance causes two issues
 - Value of degeneration inductor is altered
 - Noise from other circuits couples into LNA
Differential LNA

- **Advantages**
 - Value of L_{deg} is now much better controlled
 - Much less sensitivity to noise from other circuits

- **Disadvantages**
 - Twice the power as the single-ended version
 - Requires differential input at the chip
Note: Be Generous with Substrate Contact Placement

- Having an abundance of nearby substrate contacts helps in three ways
 - Reduces possibility of latch up issues
 - Lowers R_{sub} and its associated noise
 - Impacts LNA through backgate effect (g_{mb})
 - Absorbs stray electrons from other circuits that will otherwise inject noise into the LNA
- Negative: takes up a bit extra area
Another CMOS LNA Topology

- Consider increasing g_m for a given current by using both PMOS and NMOS devices
 - Key idea: re-use of current

- **Issues**
 - PMOS device has poorer transconductance than NMOS for a given amount of current, and f_t is lower
 - Not completely clear there is an advantage to using this technique, but published results are good
 - See A. Karanicolas, “A 2.7 V 900-MHz CMOS LNA and Mixer”, JSSC, Dec 1996
Biasing for LNA Employing Current Re-Use

- PMOS is biased using a current mirror
- NMOS current adjusted to match the PMOS current
- Note: not clear how the matching network is achieving a 50 Ohm match
 - Perhaps parasitic bondwire inductance is degenerating the PMOS or NMOS transistors?
Most broadband systems are not as stringent on their noise requirements as wireless counterparts.

Equivalent input voltage is often specified rather than a Noise Figure.

Typically use a resistor to achieve a broadband match to input source:
- We know from Lecture 8 that this will limit the noise figure to be higher than 3 dB.

For those cases where low Noise Figure is important, are there alternative ways to achieve a broadband match?
Recall Noise Factor Calculation for Resistor Load

- **Total output noise**

\[
\frac{v_{n_{\text{out}}}^2}{v_{\text{out}}(\text{tot})} = \left(\frac{R_L}{R_s + R_L} \right)^2 \frac{e_n^{2} R_s}{R_s + R_L} + \left(\frac{R_s}{R_s + R_L} \right)^2 \frac{e_n^{2} R_L}{R_s + R_L}
\]

- **Total output noise due to source**

\[
\frac{v_{n_{\text{out}}}^2}{v_{\text{out}}(\text{in})} = \left(\frac{R_L}{R_s + R_L} \right)^2 \frac{e_n^{2} R_s}{R_s + R_L}
\]

- **Noise Factor**

\[
F = 1 + \left(\frac{R_s}{R_L} \right)^2 \frac{e_n^{2} R_L}{e_n^{2} R_s} = 1 + \left(\frac{R_s}{4kT R_L} \right)^2 \frac{4kT R_L}{4kT R_s} = 1 + \frac{R_s}{R_L}
\]
Noise Figure For Amp with Resistor in Feedback

- **Total output noise (assume A is large)**
 \[
 \frac{v_{nout}^2}{v_{nout}(tot)} \approx \left(\frac{-R_f}{R_s} \right)^2 \frac{e_{nRs}^2}{e_{nRs}^2} + \frac{e_{nRf}^2}{e_{nRf}^2}
 \]

- **Total output noise due to source (assume A is large)**
 \[
 \frac{v_{nout}^2}{v_{nout}(in)} \approx \left(\frac{-R_f}{R_s} \right)^2 \frac{e_{nRs}^2}{e_{nRs}^2}
 \]

- **Noise Factor**
 \[
 F \approx 1 + \left(\frac{R_s}{R_f} \right)^2 \frac{e_{nRf}^2}{e_{nRs}^2} = 1 + \left(\frac{R_s}{R_f} \right)^2 \frac{4kT R_f}{4kT R_s} = 1 + \frac{R_s}{R_f}
 \]
Recall from Miller effect discussion that

\[Z_{in} = \frac{Z_f}{1 - \text{gain}} = \frac{R_f}{1 + A} \]

If we choose \(Z_{in} \) to match \(R_s \), then

\[R_f = (1 + A)Z_{in} = (1 + A)R_s \]

Therefore, Noise Figure lowered by being able to choose a large value for \(R_f \) since

\[F \approx 1 + \frac{R_s}{R_f} \]
Example – Series-Shunt Amplifier

- Recall that the above amplifier was analyzed in Lecture 5
- Tom Lee points out that this amplifier topology is actually used in noise figure measurement systems such as the Hewlett-Packard 8970A
 - It is likely to be a much higher performance transistor than a CMOS device, though