Models and Frameworks

SPEAKER: Joseph M. Sussman
MIT

April 3, 2007
12 Steps in a CLIOS Analysis

1. Describe System: Checklists and Goal Identification
2. Identify Major Subsystems of the Physical Domain and Major Actor Groups on the Institutional Sphere
3. Populate the Physical Domain and the Institutional Sphere on the CLIOS
4A. Describe Components on the Physical Domain and Organizations on the Institutional Sphere
4B. Describe Links Among Components and Organizations
5. Seek Insights about System Behavior
6. Identify Performance Measures, Refine System Goals, and Exercise Models and Frameworks
7. Identify and Design Strategic Alternatives for Performance Improvements
8. Flag Important Areas of Uncertainty
9. Evaluate Strategic Alternatives And Select Robust Bundles That Perform "Best" Across Uncertainties
10. Design Strategy for Implementation in the Physical Domain and Implement
11. Design Strategy for Implementation in the Institutional Sphere and Implement
12. Post-Implementation Evaluation and Modification

Figure by MIT OpenCourseWare.

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Models and Frameworks

Our focus thus far has been on the CLIOS Process as an organized way to think about system representation, design-evaluation-selection, and implementation – the Christmas Tree.

Now we shift our focus to the “ornaments” of the Christmas Tree – Models and Frameworks.
Models and Frameworks: an Introduction

- Models are mathematical abstractions of a system.
- Frameworks are qualitative abstractions for analyzing a system.
- We can use both models and frameworks to do analysis – they produce results.
Models and Frameworks: an Introduction

You have all used / developed models/frameworks in your earlier Subjects.

For example

Falling body – predict velocity on impact. Mathematical equations models allow us to predict. What in the real world do we abstract out?
Models and Frameworks: an Introduction

All models are wrong; Some are useful.

We invariably remove some reality when going from the real world to the abstraction – the model/framework.
Models and Frameworks: an Introduction

Now, let’s back up a bit and think about where models/frameworks come from – how do we conceive them? And then, how do we use them?
Methods / Tools / “Ways of thinking”

Some examples:
- Benefit / Cost Analysis
- Simulation
- System Dynamics
- Linear Programming (a method for optimizing linear systems)
- Probabilistic Risk Assessment
- Differential Equations
- and so forth

These are various lenses of viewing a system (may or may not be a CLIOS System)

A key question: “What kind of a problem are we dealing with?”
Underlying disciplines: Economics, Physics, Fluid Mechanics, Political Science, Mathematics, Thermodynamics, and so forth.
Case specific Models and Frameworks can be incorporated into Processes, such as, but of course not limited to, the CLIOS Process.
Our Structure

- Methods / Tools / “Ways of Thinking”
- Case-specific Models
- Case-specific Frameworks
- Assemble case-specific models / frameworks into processes
- Building on underlying disciplines

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].