Models and Frameworks

DISPLAYS

SPEAKER: Joseph M. Sussman
MIT

April 3, 2007
Introduction to Transportation Systems

Chapter 10:
Models and Frameworks
Models and Frameworks: An Introduction

- Models are mathematical representations of a system.
- Frameworks are qualitative organizing principles for analyzing a system.
- We can use both models and frameworks to do analysis.
What is our function as transportation professionals?

- Designing better transportation systems
- Using resources, financial and otherwise, effectively in a transportation context
- Operating transportation systems optimally
- Maintaining transportation systems efficiently
Value-laden words:

- better
- effectively
- optimally
- efficiently

These depend on your point of view.
A Structure for Transportation System Analysis
A Systems Analysis Framework: A First Look

Figure 10.1

1. Search for alternatives in the real world
2. Evaluation of alternatives
 - Selection among alternatives
 - Prediction of performance, flows, etc.
 - Reconsider measures of effectiveness

LOOP 1: Does the evaluation suggest other alternatives?
LOOP 2: Are the measures of effectiveness appropriate?
The Subtlety in Choosing Measures of Effectiveness

Be sure your measures of effectiveness are good

An Urban Area

Figure 10.2

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
A Systems Analysis Framework: A Second Look

We need to ask, “Is the abstraction any good?”

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
A Systems Analysis Framework: A Third Look

Figure 10.4

1. Search for alternatives in the real world
2. Selection among alternatives
3. Abstraction of real world into model / framework
4. Prediction of performance, flows, etc.
5. Evaluation of alternatives
6. Reconsider measures of effectiveness

Insight: Better understanding of system behavior

LOOP 1: Does the evaluation suggest other alternatives?
LOOP 2: Are the measures of effectiveness appropriate?
LOOP 3: Is the “abstraction” good at predicting?

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Why Are We Modeling?

- Choosing the Best Alternative -- Optimization
- System Operation
- Learn from Model Building Processes
- Insight

 “We may gain insight into complex situations by first understanding simpler situations resembling them.”
Modeling for Negotiation

- Prodyut Dutt, in “A Standards-Based Methodology for Urban Transportation Planning in Developing Countries”, focused on how planners work in developing countries versus the way urban planners work in the developed world. The essence of his research looked at the differences in planning methodologies necessary in the two environments.

- Dutt developed “models for negotiation” -- the idea of transparent models, where rather than shielding the outside world from what was going on within that “black box” model, planners could look into the model and clearly see the assumptions driving the trade-off about location of corridors in urban areas.
The Model Is a Shaper of Your World View

- A hammer is a fine tool, but it is not very good for washing windows.
Modeling Approaches

- Network Analysis
- Linear Programming
- Non-linear Programming
- Simulation
- Deterministic Queuing
- Probabilistic Queuing
- Regression
- Neural Networks
- Genetic Algorithms
- Cost/Benefit Analysis
- Life-cycle Costing
Modeling Approaches (continued)

- System Dynamics
- Control Theory
- Difference Equations
- Differential Equations
- Probabilistic Risk Assessment
- Supply/Demand/Equilibrium
- Game Theory
- Statistical Decision Theory
- Markov Models
Getting Answers from Models

Developing a model -- an abstraction -- and getting results from it are two different things.

LOOP 1: Does the evaluation suggest other alternatives?
LOOP 2: Are the measures of effectiveness appropriate?
LOOP 3: Is the “abstraction” good at predicting?
LOOP 4: Develop new abstraction.

Figure 10.5

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYYY].
Models vs. Frameworks

◆ Models
 ◆ Models are a mathematical representation of reality -- quantitative in nature.

◆ Frameworks
 ◆ When we talk about a framework, we are generally talking about a qualitative view of a complex system. It is “a way of thinking” -- a way of organizing our thinking about a complex system.
Here is a framework we discussed earlier:

![Framework Diagram]

Figure 10.6

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Simple vs. Complex Models and Frameworks

Figure 10.7

<table>
<thead>
<tr>
<th>MODEL (Quantitative)</th>
<th>FRAMEWORK (Qualitative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Useful</td>
<td>Useful</td>
</tr>
<tr>
<td>Not Useful</td>
<td>Not Useful</td>
</tr>
<tr>
<td>Useful</td>
<td>Useful</td>
</tr>
<tr>
<td>Not Useful</td>
<td>Not Useful</td>
</tr>
</tbody>
</table>

Cite as: Joseph Sussman, course materials for ESD.04J Frameworks and Models in Engineering Systems, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].