Single Period Inventory Models

Yossi Sheffi
Mass Inst of Tech
Cambridge, MA
Outline

- Single period inventory decisions
- Calculating the optimal order size
 - Numerically
 - Using spreadsheet
 - Using simulation
 - Analytically
- The profit function
 - For specific distributions
- Level of Service
- Extensions:
 - Fixed costs
 - Risks
 - Initial inventory
 - Elastic demand
Single Period Ordering
Selling Magazines

- **Weekly demand:**

90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90	48	87	78	58	71	102	87	66	79	97	75	89	90
57	86	95	67	89	70	113	52	84	62	91	71	66	99	73	92	66	67	89	87	64	70	54	67	88	62	79	79	105	76	73	78	50	107	80	78	51	79	80																																																																		

- **Total:** 4023 magazines
- **Average:** 77.4 Mag/week
- **Min:** 51; **max:** 113 Mag/week
Detailed Histogram

Average = 77.4 Mag/wk
Histogram

Histogram of Demand (Mag/week) vs Frequency (Wks/Yr)

Cumulative Frequency
The Ordering Decision (Spreadsheet)

- Assume: each magazine sells for: $15
- Cost of each magazine: $8

<table>
<thead>
<tr>
<th>d/wk</th>
<th>Prob.</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.00</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>50</td>
<td>0.04</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>60</td>
<td>0.10</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>70</td>
<td>0.21</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>80</td>
<td>0.29</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>90</td>
<td>0.19</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>100</td>
<td>0.10</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>110</td>
<td>0.06</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>120</td>
<td>0.02</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>130</td>
<td>0.00</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$420</td>
<td>$490</td>
<td>$560</td>
<td>$630</td>
<td>$700</td>
<td>$770</td>
<td>$840</td>
<td>$910</td>
<td>$980</td>
<td>$1050</td>
<td>$1120</td>
</tr>
<tr>
<td>Exp. Profit</td>
<td>$140</td>
<td>$210</td>
<td>$280</td>
<td>$350</td>
<td>$414</td>
<td>$464</td>
<td>$482</td>
<td>$457</td>
<td>$403</td>
<td>$334</td>
<td>$257</td>
<td>$177</td>
<td>$97</td>
<td>$17</td>
<td>$-63</td>
<td></td>
</tr>
</tbody>
</table>
Expected Profits

![Graph showing expected profits versus order size](image-url)
Optimal Order (Analytical)

- The optimal order is \(Q^* \)
- At \(Q^* \) - what is the probability of selling one more magazine?
- The expected profit from ordering the \((Q^*+1)\)st magazine is:

\[
\text{If demand is high and we sell it:} \quad (\text{REV-COST}) \times \text{Pr(Demand is higher than } Q^*)
\]
\[
\text{If demand is low and we are stuck:} \quad (-\text{COST}) \times \text{Pr(Demand } \leq Q^*)
\]

The optimum is where the total expected profit from ordering one more magazine is zero:

\[
(\text{REV-COST}) \times \text{Pr(Demand } > Q^*) - \text{COST} \times \text{Pr(Demand } \leq Q^*) = 0
\]

\[
\text{Pr(Demand } \leq Q^*) = \frac{\text{REV-COST}}{\text{REV}}
\]
Optimal Order

The "critical ratio": $Pr(\text{Demand} \leq Q^*) = \frac{\text{REV-COST}}{\text{REV}} = \frac{15 - 8}{15} = 0.47$
Salvage Value

Salvage value = $4/Mag. Critical Ratio = \(\frac{REV - COST}{REV - SLV} = \frac{15 - 8}{15 - 4} = 0.64 \)
The Profit Function

- Revenue from sold items
- Revenue or costs associated with unsold items. These may include revenue from salvage or cost associated with disposal.
- Costs associated with not meeting customers’ demand. The lost sales cost can include lost of good will and actual penalties for low service.
- The cost of buying the merchandise in the first place.
The Profit Function

\[E[Sales] = Q \cdot \int_{X=Q}^{\infty} f(x)dx + \int_{x=0}^{Q} x \cdot f(x)dx \]

\[E[Unsold] = \int_{x=0}^{Q} (Q - x) \cdot f(x)dx = Q - E[Sales] \]

\[E[Lost Sales] = \int_{X=Q}^{\infty} (x - Q) \cdot f(x)dx = \mu - E[Sales] \]

\[E[Profit] = R \cdot E[Sales] + S \cdot E[Unsold] - L \cdot E[Lost Sales] - C \cdot Q \]
The Profit Function – Simple Case

\[E[\text{Profit}] = R \cdot E[\text{Sales}] - C \cdot Q \]

Optimal Order:

\[
\frac{d}{dQ} E[\text{Profit}] = (1 - F(Q)) \cdot R - C = 0
\]

\[
\frac{d}{dQ} E[\text{Sales}] = 1 - F(Q)
\]

\[
F[Q^*] = \frac{R - C}{R} \quad \text{and:} \quad Q^* = F^{-1}\left[\frac{R - C}{R}\right]
\]
Level of Service

- Cycle Service – The probability that there will be a stock-out during a cycle
- Fill Rate - The probability that a specific customer will encounter a stock-out
Level of Service

REV = $15
COST = $8
Normal Distribution of Demand

\[X \sim N(\mu, \sigma) \]

\[E[\text{sales}] = Q - \sigma \cdot (z \cdot \Phi(z) + \phi(z)) \]

\[z = \frac{Q - \mu}{\sigma} \]

\[E[\text{Profit}] = (R - C) \cdot Q - R \cdot \sigma \cdot \left[z \cdot \Phi(z) + \phi(z) \right] \]

\[Q^* = \text{NORMINV}\left(\frac{R - C}{R}\right) = \text{NORMINV}\left(\frac{15 - 8}{15}\right) = 76 \text{ Mags} \]
Incorporating Fixed Costs

With fixed costs of $300/order:

REV=$15
COST=$8
Risk of Loss

Order Quantity

Probability of Loss

REV=$15
COST=$8

F=$300
F=0
Ordering with Initial Inventory

Given initial Inventory: Q_0, how to order?

- Cost of initial inventory

With fixed costs, order only if the expected profits from ordering are more than the ordering costs
Ordering with Fixed Costs and Initial Inventory

Example: $F = 150$

- If initial inventory is LE 46, order up to 80
- If initial inventory is GE 47, order nothing
Elastic Demand

\[\mu = D(P); \quad \sigma = f(\mu) \]

Procedure:

1. Set \(P \)
2. Calculate \(\mu \)
3. Calculate \(\sigma \)
4. \(Q^* = F^{-1}\left(\frac{P - C}{P}\right) \)
5. Calculate optimal expected profits as a function of \(P \).

\[
\begin{align*}
\text{Rev} &= $15 \\
\text{Cost} &= $8 \\
\mu(p) &= 165 - 5p \\
\sigma &= \mu/2 \\
\end{align*}
\]

\[
\begin{align*}
P^* &= $22 \\
Q^* &= 65 \text{ Mag} \\
\mu(p) &= 56 \text{ Mag} \\
\sigma &= 28 \\
\text{Exp. Profit} &= $543
\end{align*}
\]
Elastic Demand: Numerical Optimization

Screenshots removed due to copyright restrictions.
Any Questions?

Yossi Sheffi