Transportation Management

Vehicle Routing

Chris Caplice
ESD.260/15.770/1.260 Logistics Systems
Nov 2006
Local Routing

Large Number of Network Problems – we will look at four

- Shortest Path Problem
 - Given: One origin, one destination
 - Find: Shortest path from single origin to single destination

- Transportation Problem
 - Given: Many origins, many destinations, constrained supply
 - Find: Flow from origins to destinations

- Traveling Salesman Problem
 - Given: One origin, many destinations, sequential stops, one vehicle
 - Find: Shortest path connecting each stop once and only once

- Vehicle routing Problem
 - Given: One origin, many destinations, many capacitated vehicles
 - Find: Lowest cost tours of vehicles to destinations
Shortest Path Problem

- Find the shortest path in a network between two nodes - or from one node to all others
- Result is used as base for other analysis
- Connects physical to operational network

Issues

- What route in practice is used? Shortest? Fastest? Unrestricted?
- Frequency of updating the network
- Using time versus distance (triangle inequality)
- Impact of real-time changes in congestion
- Speed of calculating versus look-up
Shortest Path

Network
- Arc/Link & Nodes
- Cost is on nodes, c_{ij}

Think of a string model

Basic SP Algorithm (s to t)
1. Start at origin node, $s=i$
2. Label each adjacent nodes, j, $L'_j = L_i + c_{ij}$ iff $L'_j < L_j$
3. Pick node with lowest label, set it to i, go to step 2
4. Stop when you hit node t

Building Shortest Path Tree

Many, many variations on this algorithm,
- Label Setting
- Label Correcting

Shortest Path Matrix

<table>
<thead>
<tr>
<th>i \ j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d_{12}</td>
<td>d_{13}</td>
<td>d_{14}</td>
<td>d_{1n}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>d_{23}</td>
<td>d_{24}</td>
<td>d_{2n}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>d_{34}</td>
<td>d_{3n}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>d_{4n}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transportation Problem

- Find minimum cost routes for between multiple origins and destinations
- Flow is fungible – same products
 - Cost on arcs, c_{ij}
 - Flow on arcs, x_{ij}
- Many solution approaches
 - Balanced problem – Supply=Demand
 - Unbalanced –
 - Transhipment Problem – neutral nodes

$\text{Min } \sum_{ij \in N} c_{ij} x_{ij}$

s.t.

$\sum_{j=1}^{n} x_{ij} = \text{Supply}_i \ \forall i$

$\sum_{i=1}^{n} x_{ij} = \text{Demand}_j \ \forall j$

$x_{ij} \geq 0 \ \forall ij$
Traveling Salesman Problem

- Starting from an origin, find the minimum distance required to visit each destination once and only once and return to origin.
- m-TSP: best tour for \(m \) salesmen
- Very old problem ~1832

For history, see: http://www.tsp.gatech.edu/index.html
TSP Solution Approaches

Heuristics

- Construction
 - Nearest neighbor
 - Greedy (complete graph, pick shortest edge until Hamiltonian path)
 - Sweep (example of Cluster-First, Route-Second)
 - Space filling curve (example of Route-First, Cluster-Second)
 - Insertion (nearest, cheapest)
 - Savings (Clarke-Wright)

- Local Improvement
 - 2-opt
 - 3-opt

- Meta-heuristics
 - Tabu Search
 - Ant System
 - Simulated Annealing
 - Genetic Algorithms
 - Constraint Programming

Adapted from Goentzel 2004
Traveling Salesman Problem

- **Nearest Neighbor Heuristic**
 - Start at any node and connect tour to closest adjacent node
 - In practice 20% above optimal

- **Insertion Heuristic**
 - Form some sub tour (convex hull) and add in the nearest/furthest/cheapest/random node one at a time
 - In practice 19% / 9% / 16% / 11% above optimal

- **2-Opt Heuristic**
 - Method of improving a solution
 - Select two edges \((a,b)\) and \((c,d)\) where total tour distance decreases the most if reformed as \((a,c)\) and \((b,d)\).
Vehicle Routing Problem

- Find minimum cost tours from single origin to multiple destinations using multiple vehicles

- Who needs to solve the problem?
 - Shippers – retailers, distributors, manufacturers
 - Carriers – LTL, package
 - Service companies – repair, waste, utility, postal, snow removal

- Types of problems
 - Commercial delivery (retailers, distributors, manufacturers)
 - Commercial pickup (retailers, distributors, manufacturers)
 - Mixed pickup & delivery (LTL and package carriers)
 - Residential appointment (online grocery, medical gases, repair)
 - Residential sweep (postal, waste, utility, snow removal)
Initial Routes

10 Routes
2006 Miles

Figure by MIT OCW.
Adapted from Goentzel 2004
Optimized Routes

From 10 to 7 Routes
30% savings

From 2006 to 1345 Miles
32% improvement

Difficult to evaluate quality by inspection

Figure by MIT OCW.
Adapted from Goentzel 2004
VRP is NP-Hard

Combinatorial Growth

<table>
<thead>
<tr>
<th>Customers</th>
<th>3 stops</th>
<th>5 stops</th>
<th>10 stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>total on the route</td>
<td>Ways to select customers for the route</td>
<td>Ways to select and sequence the route</td>
<td>Hours of work to evaluate one per second</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>720</td>
<td>0.20</td>
</tr>
<tr>
<td>20</td>
<td>1,140</td>
<td>6,840</td>
<td>1.9</td>
</tr>
<tr>
<td>30</td>
<td>4,060</td>
<td>24,360</td>
<td>6.8</td>
</tr>
<tr>
<td>40</td>
<td>9,880</td>
<td>59,280</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>19,600</td>
<td>117,600</td>
<td>33</td>
</tr>
<tr>
<td>60</td>
<td>34,220</td>
<td>205,320</td>
<td>57</td>
</tr>
<tr>
<td>70</td>
<td>54,740</td>
<td>328,440</td>
<td>91</td>
</tr>
<tr>
<td>80</td>
<td>82,160</td>
<td>492,960</td>
<td>137</td>
</tr>
<tr>
<td>90</td>
<td>117,480</td>
<td>704,880</td>
<td>196</td>
</tr>
<tr>
<td>100</td>
<td>161,700</td>
<td>970,200</td>
<td>270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customers</th>
<th>3 stops</th>
<th>5 stops</th>
<th>10 stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>total on the route</td>
<td>Ways to select customers for the route</td>
<td>Ways to select and sequence the route</td>
<td>Hours of work to evaluate one per second</td>
</tr>
<tr>
<td>10</td>
<td>252</td>
<td>30,240</td>
<td>0.35</td>
</tr>
<tr>
<td>20</td>
<td>1,504</td>
<td>1,860,480</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>142,506</td>
<td>17,100,720</td>
<td>198</td>
</tr>
<tr>
<td>40</td>
<td>658,008</td>
<td>78,960,960</td>
<td>914</td>
</tr>
<tr>
<td>50</td>
<td>2,118,760</td>
<td>254,251,200</td>
<td>2,943</td>
</tr>
<tr>
<td>60</td>
<td>5,461,512</td>
<td>655,381,440</td>
<td>7,585</td>
</tr>
<tr>
<td>70</td>
<td>12,103,014</td>
<td>1,452,361,680</td>
<td>16,810</td>
</tr>
<tr>
<td>80</td>
<td>24,040,016</td>
<td>2,884,801,920</td>
<td>33,389</td>
</tr>
<tr>
<td>90</td>
<td>43,949,268</td>
<td>5,273,912,160</td>
<td>61,041</td>
</tr>
<tr>
<td>100</td>
<td>75,287,520</td>
<td>9,034,502,400</td>
<td>104,566</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customers</th>
<th>3 stops</th>
<th>5 stops</th>
<th>10 stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>total on the route</td>
<td>Ways to select customers for the route</td>
<td>Ways to select and sequence the route</td>
<td>Hours of work to evaluate one per second</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3,628,800</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>184,756</td>
<td>670,442,572,800</td>
<td>21,260</td>
</tr>
<tr>
<td>30</td>
<td>30,045,015</td>
<td>109,027,350,432,000</td>
<td>3,457,235</td>
</tr>
<tr>
<td>40</td>
<td>847,660,528</td>
<td>3,075,990,524,066,400</td>
<td>97,539,020</td>
</tr>
<tr>
<td>50</td>
<td>10,272,278,170</td>
<td>37,276,043,023,296,000</td>
<td>1,182,015,570</td>
</tr>
<tr>
<td>60</td>
<td>75,394,027,566</td>
<td>273,589,847,231,501,000</td>
<td>8,675,477,145</td>
</tr>
<tr>
<td>70</td>
<td>396,704,524,216</td>
<td>1,439,561,377,475,020,000</td>
<td>45,648,191,828</td>
</tr>
<tr>
<td>80</td>
<td>1,646,492,110,120</td>
<td>5,974,790,569,203,460,000</td>
<td>189,459,366,096</td>
</tr>
<tr>
<td>90</td>
<td>5,720,645,481,903</td>
<td>20,759,078,324,729,600,000</td>
<td>658,266,055,452</td>
</tr>
<tr>
<td>100</td>
<td>17,310,309,456,440</td>
<td>62,815,650,955,529,500,000</td>
<td>1,991,871,225,125</td>
</tr>
</tbody>
</table>

Days of work to evaluate one per second

Years of work to evaluate one per second

Adapted from Goentzel 2004
Vehicle Routing Problems

General Approaches

- Heuristics
 - Route first Cluster second
 - Space filling curve
 - Any earlier heuristic can be used
 - Cluster first Route second
 - Sweep Algorithm
 - Savings (Clarke-Wright)

- Optimal
 - MILP – Column Generation
Heuristic Approach – Cluster & Sweep

1. Cluster stops by density
2. Start at boundary and sweep CW adding stops until V_{MAX}
Savings Algorithm

Clark-Wright Algorithm

- Serve each node directly
- Identify savings for combining two nodes on same tour
- Add nodes together if savings > 0
 - $2c_{0i} + 2c_{0j} > c_{0i} + c_{ij} + c_{j0}$
 - Savings = $c_{0i} + c_{j0} - c_{ij}$

<table>
<thead>
<tr>
<th>i \ j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shortest Path Matrix
Savings Algorithm

Suppose Max Capacity = 3

Savings = c_{0i} + c_{j0} - c_{ij}

- S(1,2) = 10 + 15 - 8 = 17
- S(1,3) = 10 + 19 - 23 = 6
- S(1,4) = 10 + 22 - 35 = -3
- S(2,3) = 15 + 19 - 12 = 22
- S(2,4) = 15 + 22 - 21 = 16
- S(3,4) = 19 + 22 - 5 = 36

Shortest Path Matrix

<table>
<thead>
<tr>
<th>i \ j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td>23</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Benefits of this approach?
Optimal Approach – MILP w/CG

Each Row is a stop
Each Column is a generated vehicle route and its cost
Each matrix coefficient, a_{ij}, is $\{0,1\}$, identifying the stops on the j’th route
Define Y_j, $\{0,1\}$, “1” if the route is used ; else “0”

<table>
<thead>
<tr>
<th>Route 1</th>
<th>Route 2</th>
<th>Route 3</th>
<th>....</th>
<th>....</th>
<th>Route M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>Stop A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Stop B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stop C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Stop D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stop E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Stop F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stop G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>..</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stop N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Minimize: $\sum_j C_j Y_j$

Subject to:
$\sum_{j=1}^{J} a_{ij} Y_j \geq D_i$; for all I
$Y_j = \{0,1\}$, for all J
Same Example

- Each tour is a column
 - How are tours generated?
 - Could each column be a solution?
 - How could this be enhanced?

Shortest Path Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Dist

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
</tr>
</tbody>
</table>

Dec Var

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Route 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Route 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Route 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Capacity</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Distance</td>
<td>20</td>
<td>30</td>
<td>38</td>
<td>44</td>
<td>33</td>
<td>52</td>
<td>67</td>
<td>46</td>
<td>58</td>
<td>46</td>
<td>59</td>
<td>61</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

MIT Center for Transportation & Logistics – ESD.260

© Chris Caplice, MIT
Regardless of Approach

Rules of Thumb
- Good routes are "rounded", not "star shaped"
- Good routes don't cross themselves or others
- Good sectors are "pie shaped", not "checker board"
- Good solutions "look like a daisy"

Good Practice Tips
- Always use a Preview-Analyze-Review methodology
- Periodically visit the internal logic within the TMS
- Never discount the salty expert who has been doing this longer than you’ve been alive
- Identify all special conditions (customer A must be delivered to first) and then validate or reject them
Other Extensions to VRP

- **More dimensions/elements**
 - **Sourcing**
 - Multiple depot
 - Dynamic sourcing (depot varies)
 - **Order**
 - Multiple dimensions (e.g. cube, weight)
 - Mixed pickup and delivery
 - Time window
 - “Vendor Managed Inventory”
 - **Plan**
 - Fixed / Static / Master
 - Variable / Dynamic / Daily
 - Zone
 - Real-time dispatch
 - **Resource**
 - Backhaul
 - Continuous moves

- **Academic problems**
 - Multiple Depot VRP (MDVRP)
 - Multi-commodity VRP
 - Vehicle Routing Problem with Pick-up and Delivering (VRPPD)
 - VRP with time windows (VRPTW)
 - Inventory Routing Problem (IRP)
 - Stochastic VRP (SVRP) – minimize expected costs for satisfying realized demand/customers
 - Dynamic VRP – redirect trucks during the execution of their route to accommodate new orders
 - Vehicle Routing Problem with Backhauls (VRPB)

Adapted from Goentzel 2004
Fixed vs. Dynamic Route Plans

Fixed/static routes
- Routes repeat on a cycle
 - Daily, weekly, whenever there is sufficient demand
- Routes are changed when customer base changes
 - Quarterly, annually
- Routes are based on “forecast” demand
- Routes are designed for “heavy days” related to truck capacity and driver hours
- Primary advantages
 - Driver familiarity
 - Ease of execution
- Primary disadvantages
 - Inefficiency caused by variability
 - Difficulty of efficient customer day assignment

Variable/dynamic routes
- Routes change continually
 - Typically every day
- Routes based on “actual” shipment requirements
- Routes are designed for vehicle and driver constraints
- Primary advantages
 - Utilization of trucks and drivers
 - Flexibility in customer ordering
- Primary disadvantages
 - Difficulty of determining optimum routes
 - Difficulty of maintaining route planning process
 - Execution may not match plan

Adapted from Goentzel 2004
Real-World Issues

- The real world does not behave according to uniform assumptions
 - Dock configuration
 - Dock hours
 - Trailer types
 - Moveable bulkheads (bulk liquids, grocery reefers)
 - Truck types
 - Truck-trailer combos: doubles & triples (pups)
 - Compatibility: order-vehicle, order-order, vehicle-site
 - Preferred customers (big box)
 - Driver preferences (seniority, local knowledge)
 - Driver skills (service technician)
 - Rush hour traffic
 - Real-time dispatching (deployed vehicles)
 - Refueling
 - Maintenance

Adapted from Goentzel 2004
Element Interactions

- **Truck & Trailer**
 - Trailers the tractor can handle – length, pups, specialized (e.g. car hauler)

- **Vehicle & Customer**
 - Must be able to visit the customer (loading dock, cornering, parking)

- **Vehicle & Order**
 - Products may not be deliverable on certain resources -- HazMat, loading/handling equipment (tanks, racks), capabilities (refrigeration), physical dimensions, etc.

- **Vehicle & Driver**
 - Not licensed for the truck, not able to load/unload trailer

- **Order & Order**
 - Products may not mix (lumber & light bulbs, bottled water & dehydrated food, etc.)

Adapted from Goentzel 2004
Manual Planning

Plan using paper, pencil, and experience

Advantages
- Cheap and easy

Challenges
- Cannot generate multiple solutions
- Difficult to evaluate result
- Decentralized

Image of drawn-on map removed due to copyright restrictions.

Adapted from Goentzel 2004 Map-on-the-wall
Interactive GIS

- Plan using human intuition, guided by simple heuristics

Advantages
- Evaluation is easier (distance, time, cost calculations, and visual)

Challenges
- Time consuming (and typically there is limited time for planning)
- Requires “super-users”
 - Need technical aptitude
 - Requires regular training
- Typically decentralized

Adapted from Goentzel 2004
Automated Heuristics

Plan using construction, local improvement, & other heuristics

Advantages
- Provides solutions relatively quickly

Challenges
- Solution quality hard to predict
 - Heuristics that work well for one problem may work poorly for another
 - Solution quality from heuristics can change drastically when the data changes
 - Hard to know when to settle on a solution
- Complexity
 - Not as good if there are complex constraints or shipments vary in size
 - Need sophisticated expert to improve or tune
- Typically users stick with the same approach and manually edit plans

Adapted from Goentzel 2004
Optimization

- Column generation and set covering IP

Advantages
- Determines best solution among the options considered

Challenges
- Quality depends on quality of options created (column generation)
- Requires significant computing power (parallel computing is advantageous)
- Requires regular maintenance by domain and technology experts

Adapted from Goentzel 2004
Questions?