Inventory and EOQ Models

Agenda

- Inventory
 - Reasons for holding inventory
 - Dimensions of inventory models
- EOQ-type models
 - Basic model
 - EPQ model
 - Planned backorders
 - Quantity discounts
Inventory

Inventory = cumulative supply – cumulative demand

Why hold inventories?

- The transaction motive
 - Economies of scale: production, transportation, discount, replenishment, ...
 - Competition purpose
- The precautionary motive
 - Demand uncertainty: unpredictable events
 - Supply uncertainty: lead time, random yield, ...
- The speculative motive
 - Fluctuating value: ordering cost, selling price
 - Demand increase: seasonality, promotion, ...

supply → inventory → demand
Dimensions of inventory models

- **Products**
 - single product vs. multiple products
 - perishable or durable
- **Decision variables**
 - when and how much to order
 - pricing
 - production and/or delivery schedule
 - capacity expansion
 - setup reduction
 - quality improvement
- **Decision making structure**
 - single decision maker vs. multiple decision makers
- **Time**
 - single period, finite horizon, infinite horizon
 - deterministic or stochastic

Dimensions of inventory models

- **Objective function**
 - costs (average or discounted): order/production, inventory holding and shortage
 - Profit
 - risk-neutral vs. risk averse
- **Physical system**
 - single location vs. multiple locations
 - single stage vs. multiple stages
- **Information structure**
 - continuous review vs. periodic review
 - inexact stock level
- **Resource constraints**
 - limited capacity
Dimensions of inventory models

- Supply
 - Controllable: when and how much to order
 - Supply contracts
 - Imperfect quality
 - Limited capacity
 - Lead time
- Demand
 - Exogenous: deterministic (constant or time dependent), stochastic
 - Endogenous: pricing model

Ordering costs in inventory models

- Ordering costs
 - Linear: proportional to order quantity
 - Concave: economies of scale, incremental discount
 - General: all-units discount
Inventory costs in inventory models

- **Inventory carrying costs**
 - Insurance cost: 2%
 - Maintenance cost: 6%
 - Opportunity cost of alternative investment: 7-10%

- **Shortage costs**: loss of good will or reputation (hard to quantify)
 - Lost sale case
 - Backorder case

Agenda

- **Inventory**
 - Reasons for holding inventory
 - Dimensions of inventory models

- **EOQ-type models**
 - Basic model
 - EPQ model
 - Planned backorders
 - Quantity discounts
EOQ Model: Assumptions

- infinite horizon
- constant and deterministic demand: D items/unit time
- no shortages
- fixed order quantity Q
- zero lead time
- order cost: $K + cQ$
- inventory holding cost: h per item per unit time

Objective of the EOQ model

Objective: minimize the average cost per unit of time over the infinite horizon subject to no shortages

$$\min \lim_{T \to \infty} \frac{1}{T} \int_0^T \{hI(t) + O(t)\} dt$$

$I(t)$: inventory level at time t

$O(t)$: order cost at time t
EOQ Model: Graphical Representation

EOQ Model: Costs per unit time

The total cost for one cycle

\[= (K + cQ) + h \int_0^{Q/D} I(t) \, dt \]

\[= (K + cQ) + h \int_0^{Q/D} (Q - Dt) \, dt \]

\[= (K + cQ) + \frac{hQ^2}{2D} \]

The average cost per unit of time

\[= \frac{KD}{Q} + \frac{hQ}{2} + cD \]
EOQ Model: EOQ

Find the optimal ordering quantity: Economic Order Quantity

First order optimality condition

\[0 = \frac{d(Cost \text{ per unit time})}{dQ} = -\frac{KD}{Q^2} + \frac{h}{2} \]

EOQ \(= Q^* = \sqrt{\frac{2DK}{h}} \)

Optimal Cycle Time \(= T^* = \sqrt{\frac{2K}{hD}} \)

EOQ Model: Two Questions

- Lead Time
- Why EOQ independent of the variable ordering cost?
EOQ Model: One Example

A) The demand for electrical components is fixed at a rate of 2400 units/month. Each time the store makes an order it costs 320$. The item costs 3$. The annual inventory holding cost rate is 20%.

\[Q^* = 5543 \text{ units}, \ T^* = 2.3 \text{ months} \]

EOQ Model: One Example

B) Suppose we now order electrical components only in hundreds of units.

\[Q^* = 5500 \text{ units} \]
\[C(5500) = 277.13 + cD \] $
\[C(5600) = 278 + cD \]$
Sensitivity Analysis

\[
\begin{align*}
C'(Q^*) &= \sqrt{2K Dh} \\
C'(\gamma Q^*) &= \frac{1}{\gamma} \sqrt{\frac{1}{2} K Dh} + \gamma \sqrt{\frac{1}{2} K Dh} \\
&= \sqrt{2K Dh} (\gamma + \frac{1}{\gamma}) / 2 \\
\frac{C(\gamma Q^*)}{C(Q^*)} &= (\gamma + \frac{1}{\gamma}) / 2
\end{align*}
\]

<table>
<thead>
<tr>
<th>γ</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.2</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{C(\gamma Q^)}{C(Q^)}$</td>
<td>1.25</td>
<td>1.025</td>
<td>1.006</td>
<td>1</td>
<td>1.017</td>
<td>1.083</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Agenda

- **Inventory**
 - Reasons for holding inventory
 - Dimensions of inventory models

- **EOQ-type models**
 - Basic model
 - EPQ model
 - Planned backorders
 - Quantity discounts
EPQ Model

- Production Planning Model
 - No shortages
 - Production rate: $P > D$

\[Q - T_p D \]

\[P > D \quad D \quad T \]

\[T_p \quad T_D \quad T \]

time

Inventory level

EPQ: Analysis

Let the total demand in one cycle is $Q = T_p P$

The cost for one cycle

\[K + h \int_0^{T_p} (P - D) t dt + h \int_{T_p}^T (Q - D t) dt \]

\[= K + \frac{h}{2} (P - D) Q^2 + h \left[\frac{Q^2}{2D} - \frac{Q^2}{T} + \frac{D Q^2}{T^2} \right] \]

Average cost per unit time $C(Q)$

\[= \frac{DK}{Q} + \frac{hQ}{2} \frac{P - D}{P} \]

Economic Production Quantity:

\[\frac{dC(Q)}{dQ} = 0 \rightarrow Q^* = \sqrt{\frac{2DK}{h} \frac{P}{P - D}} \]

\[C(Q^*) = \sqrt{2DKh} \sqrt{\frac{P - D}{P}} \]
Agenda

- Inventory
 - Reasons for holding inventory
 - Dimensions of inventory models
- EOQ-type models
 - Basic model
 - EPQ model
 - Planned backorders
 - Quantity discounts

EOQ Model: Planned Backorder

- Let π be the shortage cost per item per unit of time

\[\text{Inventory level} \]

\[Q \]

\[s \]

\[s-Dt \]

\[t \]

\[\frac{s-Dt}{D} \]

\[\frac{(Q-s)}{D} \]

\[\text{time} \]
EOQ Model: Backorder Analysis

Total Costs Per Cycle
\[TC(s, Q) = K + \frac{hs^2}{2D} + \frac{\pi}{2D}(Q - s)^2 \]

Average Cost per unit time
\[C(s, Q) = \frac{DK}{Q} + \frac{hs^2}{2Q} + \frac{\pi}{2Q}(Q - s)^2 \]

Economic Order Quantity and Order-up-to Level
\[Q^* = \sqrt{\frac{2KD}{h}} \sqrt{\frac{\pi + h}{\pi}} \]
\[s^* = \sqrt{\frac{2KD}{h}} \sqrt{\frac{\pi}{\pi + h}} \]
\[C(s^*, Q^*) = \sqrt{2KDh} \sqrt{\frac{\pi}{\pi + h}} \]

Why shortages?

![Diagram showing EOQ model with backorder analysis](image)
Agenda

- Inventory
 - Reasons for holding inventory
 - Dimensions of inventory models
- EOQ-type models
 - Basic model
 - EPQ model
 - Planned backorders
 - Quantity discounts

Quantity Discounts

<table>
<thead>
<tr>
<th>Order cost</th>
<th>Incremental discounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K + c₁q + c₂(Q-q)</td>
</tr>
<tr>
<td>K + c₁Q</td>
<td>K + c₂Q</td>
</tr>
<tr>
<td>All-units discounts</td>
<td></td>
</tr>
<tr>
<td>C₁ > C₂</td>
<td></td>
</tr>
</tbody>
</table>
All-units discounts: Case 1

\[C_1(Q) = \frac{K}{Q} + c_1 D + \frac{hD}{2} \]

\[C_2(Q) = \frac{K}{Q} + c_2 D + \frac{hD}{2} \]

\[q^* = \sqrt{\frac{2KD}{h}} \]

All-units discounts: Case 2

\[C_1(Q) = \frac{K}{Q} + c_1 D + \frac{hD}{2} \]

\[C_2(Q) = \frac{K}{Q} + c_2 D + \frac{hD}{2} \]

\[q^* = \sqrt{\frac{2KD}{h}} \]
All-units discounts: Case 3

\[C_1(Q) = \frac{KD}{Q} + c_1D + hD/2 \]

\[C_2(Q) = \frac{KD}{Q} + c_2D + hD/2 \]

\[Q^*_0 = \sqrt{\frac{2KD}{h}} \]

All-units discount: Summary

Case 1: \(q \leq Q^*_0 \), \(Q^* = Q^*_0 \)

Case 2: \(q \geq Q^*_0 \), \(C_1(Q^*_0) \leq C_2(q) \), \(Q^* = Q^*_0 \)

Case 3: \(q \geq Q^*_0 \), \(C_1(Q^*_0) \geq C_2(q) \), \(Q^* = q \)