ESD.33 -- Systems Engineering

Session #9
Critical Parameter Management & Error Budgeting

Dan Frey
Plan for the Session

Follow up on session #8

- Critical Parameter Management
- Probability Preliminaries
- Error Budgeting
 - Tolerance
 - Process Capability
 - Building and using error budgets

Next steps
S - Curves

Atish Banergee –

We first studied S-curves in technology strategy…The question remained why the S-curve has the peculiar shape. Well I found the answer in system dynamics. It is a general phenomenon and not restricted to technology.

It can be thought of as two curves:
1. The lower part of the curve is growth with acceleration....
2. The upper part of the s-curve is called a goal-seeking curve and can be thought of as growth with deceleration...
Trends in Compressor Performance

Evolution of Jet Engine Performance

Plan for the Session

• Follow up on session #8
• Critical Parameter Management
• Probability Preliminaries
• Error Budgeting
 – Tolerance
 – Process Capability
 – Building and using error budgets
• Next steps
Critical Parameter Management

• CPM provides discipline and structure
• Produce critical parameter documentation
 – For example, a critical parameter drawing
• Traces critical parameters all the way through to manufacture and use
• Determines process capability (C_p or C_{pk})
• Therefore, requires probabilistic thinking
Plan for the Session

• Follow up on session #8
• Critical Parameter Management
• Probability Preliminaries
 • Error Budgeting
 – Tolerance
 – Process Capability
 – Building and using error budgets
• Next steps
Probability Definitions

• Sample space – a list of all possible outcomes of an experiment
 – Finest grained
 – Mutually exclusive
 – Collectively exhaustive

• Event - A collection of points in the sample space
Concept Question

• You roll 2 dice

• Give an example of a single point in the sample space?

• How might you depict the full sample space?

• What is an example of an “event”?
Probability Measure

• Axioms
 – For any event A, $P(A) \geq 0$
 – $P(U) = 1$
 – If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

For the case of rolling two dice:
A = rolling a 7 and
B = rolling a 1 on at least one die
Is it the case that $P(A + B) = P(A) + P(B)$?
Discrete Random Variables

- A random variable that can assume any of a set of discrete values
- Probability mass function
 \[p_x(x_o) = \text{probability that the random variable } x \text{ will take the value } x_o \]
- Let's build a pmf for rolling two dice
 - random variable \(x \) is the total

\[
p_x(x) \quad x=10
\]
Continuous Random Variables

- Can take values anywhere within continuous ranges
- Probability density functions obey three rules

- \(P\{L < x \leq U\} = \int_{L}^{U} f_x(x) \, dx \)
- \(0 \leq f_x(x) \) for all \(x \)
- \(\int_{-\infty}^{\infty} f_x(x) \, dx = 1 \)
Measures of Central Tendency

• Expected value
 \[E(g(x)) = \int_a^b g(x) f_x(x) dx \]

• Mean
 \[\mu = E(x) \]

• Arithmetic average
 \[\frac{1}{n} \sum_{i=1}^{n} x_i \]

• Median

• Mode
Measures of Dispersion

- Variance: \(\text{VAR}(x) = \sigma^2 = E((x - E(x))^2) \)

- Standard deviation: \(\sigma = \sqrt{E((x - E(x))^2)} \)

- Sample variance: \(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)

- \(n^{th} \) central moment: \(E((x - E(x))^n) \)

- Covariance: \(E((x - E(x))(y - E(y))) \)
Sums of Random Variables

• Average of the sum is the sum of the average (regardless of distribution and independence)
 \[E(x + y) = E(x) + E(y) \]

• Variance also sums iff independent
 \[\sigma^2(x + y) = \sigma(x)^2 + \sigma(y)^2 \]

• This is the origin of the RSS rule
 – Beware of the independence restriction!
Concept Test

• A bracket holds a component as shown. The dimensions are independent random variables with standard deviations as noted. Approximately what is the standard deviation of the gap?

A) 0.011”
B) 0.01”
C) 0.001”

\(\sigma = 0.01" \)
\(\sigma = 0.001" \)
Uniform Distribution

• A reasonable (conservative) assumption when you know the limits of a variable but little else

\[\sigma = \frac{(U - L)}{2\sqrt{3}} \]
Basic Application

• I have two spinners

\[x = \text{result of blue spinner} \]
\[y = \text{result of red spinner} \]
\[z = x + y \]

• What are the pdfs for variables \(x, y, \) and \(z? \)

\[
P\{a < x \leq b\} = \int_{a}^{b} f_x(x) \, dx
\]

\[
\int_{-\infty}^{\infty} f_x(x) \, dx = 1
\]

\[0 \leq f_x(x) \text{ for all } x \]
Simulation Can Quickly Answer the Question

trials=10000; nbins=trials/1000;
x = random('Uniform',0,1,trials,1);
y = random('Uniform',0,2,trials,1);
z = x + y;

subplot(3,1,1); hist(x,nbins); xlim([0 3]);
subplot(3,1,2); hist(y,nbins); xlim([0 3]);
subplot(3,1,3); hist(z,nbins); xlim([0 3]);
Probability Distribution of Sums

• If z is the sum of two random variables x and y

\[z = x + y \]

• Then the probability density function of z can be computed by convolution

\[
p_z(z) = \int_{-\infty}^{z} x(z - \zeta)y(\zeta)d\zeta
\]
Convolution

\[p_z(z) = \int_{-\infty}^{z} x(z - \zeta) y(\zeta) \, d\zeta \]
Convolution

\[p_z(z) = \int_{-\infty}^{\infty} x(z - \zeta) y(\zeta) \, d\zeta \]
Central Limit Theorem

The mean of a sequence of n iid random variables with

- Finite μ

$$E\left(|x_i - E(x_i)|^{2+\delta}\right) < \infty \quad \delta > 0$$

approximates a normal distribution in the limit of a large n.
Normal Distribution

\[f_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

-6\sigma \quad -3\sigma \quad -1\sigma \quad \mu \quad +1\sigma \quad +3\sigma \quad +6\sigma

\begin{align*}
\rightarrow & \quad 68.3\% \\
\rightarrow & \quad 99.7\% \\
\rightarrow & \quad 1-2\text{ppb}
\end{align*}
Joint Normal Distribution

\[p(x) = \frac{1}{(\sqrt{2\pi})^m \sqrt{|K|}} \exp\left\{ -\frac{1}{2} (x - \mu)^T K^{-1} (x - \mu) \right\} \]

- The lines of constant probability density are ellipsoids
- If the matrix \(K \) is diagonal, then the variables are uncorrelated and independent
Independence

• Random variables x and y are said to be independent iff

$$f_{xy}(x,y) = f_x(x)f_y(y)$$

• Or, knowledge of x provides no information to update the distribution of y
Expectation Shift

\[S = E(y(x)) - y(E(x)) \]

Under utility theory (DBD), \(S \) is a key difference between probabilistic and deterministic design.
Plan for the Session

- Follow up on session #8
- Critical Parameter Management
- Probability Preliminaries
 - Tolerance
 - Process Capability
 - Building and using error budgets

- Next steps
Error Budgets

• A tool for predicting and managing variability in an engineering system
• A model that propagates errors through a system
• Links aspects of the design and its environment to tolerance and capability
• Used for tolerance design, robust design, diagnosis…
Engineering Tolerances

• Tolerance --The total amount by which a specified dimension is permitted to vary (ANSI Y14.5M)

• Every component within spec adds to the yield (Y)
Tolerance on Position

Lead

$>25\% W$

Land
Tolerance of Form

THIS ON A DRAWING MEANS THIS

0.25 wide tolerance zone
GD&T Symbols

Geometric Characteristic Symbols

<table>
<thead>
<tr>
<th>Type of Tolerance</th>
<th>Characteristic</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Individual Features</td>
<td>Straightness</td>
<td>—</td>
</tr>
<tr>
<td>Form</td>
<td>Flatness</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>Circularity (Roundness)</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Cylindricity</td>
<td>◦</td>
</tr>
<tr>
<td>For Individual or Related Features</td>
<td>Profile of a Line</td>
<td>⊙</td>
</tr>
<tr>
<td>Profile</td>
<td>Profile of a Surface</td>
<td>⊙</td>
</tr>
<tr>
<td>Orientation</td>
<td>Angularity</td>
<td>◦</td>
</tr>
<tr>
<td></td>
<td>Perpendicularity</td>
<td>⊥</td>
</tr>
<tr>
<td></td>
<td>Parallelism</td>
<td>//</td>
</tr>
<tr>
<td>Location</td>
<td>Position</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Concentricity</td>
<td>◎</td>
</tr>
<tr>
<td>Runout</td>
<td>Circular Runout</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td>Total Runout</td>
<td>†</td>
</tr>
</tbody>
</table>

†Arrowhead(s) may be filled in.
Multiple Tolerances

• Most products have many tolerances
• Tolerances are pass / fail
• All tolerances must be met (dominance)
Variation in Manufacture

- Many noise factors affect the system
- Some noise factors affect multiple dimensions (leads to correlation)
Process Capability Indices

- Process Capability Index
 \[C_p \equiv \frac{(U - L)/2}{3\sigma} \]

- Bias factor
 \[k = \frac{\mu - \frac{U + L}{2}}{(U - L)/2} \]

- Performance Index
 \[C_{pk} \equiv C_p(1 - k) \]
• Motorola’s “6 sigma” programs suggest that we should strive for a C_p of 2.0. If this is achieved but the mean is off target so that $k=0.5$, estimate the process yield.
C_p and k Determine Yield

- By definition

\[Y_{FT} = \int_{L}^{U} p(q) dq \]

- If Gaussian

\[Y_{FT} = \frac{1}{2} \left[\text{erf} \left(\frac{3\sqrt{2}}{2} C_p (1 - k) \right) + \text{erf} \left(\frac{3\sqrt{2}}{2} C_p (1 + k) \right) \right] \]

This function to maps \(C_p \) and \(k \) to yield
C_p and k Determine Quality Loss

\[
\text{Quality Loss} = \frac{A_o}{[(U - L)/2]^2} \left(d - \frac{U + L}{2} \right)^2
\]

\[
\text{E(Quality Loss)} = A_o \left(k^2 + \frac{1}{9C_p^2} \right)
\]

Taguchi's quality loss function

ANSI's implied quality loss function
Crankshafts

• What does a crankshaft do?
• How would you define the tolerances?
• How does variation affect performance?
Printed Wiring Boards

• What does the second level connection do?
• How would you define the tolerances?
• How does variation affect performance?
C_p and k for the System

$C_p = 0.82$

$k = 0.08$

$Y_{FT} = 98.3\%$
Producibility Analysis

• Rolled throughput yield (Y_{RT})--
 The probability that all tolerances are met

• Motorola’s approach
 \[Y_{RT} = \prod_{i=1}^{m} Y_{FT_i} \]

• Assumes probabilistic independence

Motorola’s formula
\[Y_{RT} = 0.983^{368} = 0.2\% \]

Hughes’ data
\[Y_{RT} = 66.7\% \]
Surface Mount Data
Plan for the Session

• Follow up on session #8
• Critical Parameter Management
• Probability Preliminaries
• Error Budgeting
 – Tolerance
 – Process Capability
• Building and using error budgets
• Next steps
Error Sources

• Kinematic errors
 – Straightness
 – Squareness
 – Bearings
• Drive related errors
• Thermal errors
• Static loading
• Dynamics
Errors in a Linear Drive

- Lead deviation (µm)
- Cumulative lead error (µm/mm)
- Once per revolution lead error (µm)
- Nominal travel (mm)
Angular Errors

OK, so you put the error in the model. Now what will happen when the machine moves?
A Model of a Robot

[Diagram showing a robot model with labeled dimensions: 1000 mm, 500 mm, 400 mm, 300 mm, 60 mm, and a point labeled as Point p.]
Errors in the Robot

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{z1}</td>
<td>Drive error of joint #1</td>
<td>0 rad</td>
<td>0.0001 rad</td>
</tr>
<tr>
<td>ϵ_{z2}</td>
<td>Drive error of joint #2</td>
<td>0 rad</td>
<td>0.0001 rad</td>
</tr>
<tr>
<td>δ_{z3}</td>
<td>Drive error of joint #3</td>
<td>$Z \cdot 0.0001$</td>
<td>0.01mm</td>
</tr>
<tr>
<td>ϵ_{x3}</td>
<td>Pitch of joint #3</td>
<td>0 rad</td>
<td>0.00005 rad</td>
</tr>
<tr>
<td>ϵ_{y3}</td>
<td>Yaw of joint #3</td>
<td>0 rad</td>
<td>0.00005 rad</td>
</tr>
<tr>
<td>xp$_2$</td>
<td>Parallelism of joint 2 in the x direction</td>
<td>0.0002 rad</td>
<td>0.0001 rad</td>
</tr>
</tbody>
</table>
A Model of a Robot

• The matrices describe the intended motions and the errors

\[
0^T = \begin{bmatrix}
1 & 0 & 0 & 1000 \text{mm} \\
0 & 1 & 0 & 0 \text{mm} \\
0 & 0 & 1 & 0 \text{mm} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos(\Theta_1 + \epsilon_1) & -\sin(\Theta_1 + \epsilon_1) & 0 & 0 \text{mm} \\
\sin(\Theta_1) & \cos(\Theta_1 + \epsilon_1) & 0 & 0 \text{mm} \\
0 & 0 & 1 & 0 \text{mm} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 500 \text{mm} \\
0 & 1 & -x_p & 0 \text{mm} \\
0 & x_p & 1 & 60 \text{mm}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\cos(\Theta_2 + \epsilon_2) & -\sin(\Theta_2) & 0 & 0 \text{mm} \\
\sin(\Theta_2) & \cos(\Theta_2 + \epsilon_2) & 0 & 0 \text{mm} \\
0 & 0 & 1 & 0 \text{mm} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 400 \text{mm} \\
0 & 1 & -\epsilon_{y_3} & 0 \text{mm} \\
0 & 0 & 1 & \epsilon_{z_3} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \epsilon_{y_3} & 0 \text{mm} \\
0 & 1 & -\epsilon_{z_3} & 0 \text{mm} \\
-\epsilon_{y_3} & \epsilon_{z_3} & 1 & -Z - \delta_{z_3}
\end{bmatrix}
\]

• Can be applied to any point on the end effector

\[
\begin{bmatrix}
p'_x \\
p'_y \\
p'_z
\end{bmatrix} = 0^T_3
\begin{bmatrix}
0 \\
0 \\
-300
\end{bmatrix}
\]
Homework #5

• Short answers on TRIZ and probability
• Error budgeting
 – Two tasks are to be done with the robot
 – Analyze the tasks
 – Discuss changes to the system
• A Matlab file is available in the HW folder just so you don’t have to re-type the matrices
Next Steps

• You can download HW #5 Error Budgetting
 – Due 8:30AM Tues 13 July

• See you at Thursday’s session
 – On the topic “Design of Experiments”
 – 8:30AM Thursday, 8 July

• Reading assignment for Thursday
 – All of Thomke
 – Skim Box
 – Skim Frey