Introduction to System Architecture

Architecture to Value

Ed Crawley
January 5, 2007
Rev 2.0
Today’s Topics

- Objectives, Expectations and Administration
- Key Ideas
 - Architecture
 - Architecting
 - the Product Development Process (PDP)
- Form of Systems
- Intro to Upstream Processes
 - Technology infusion
The Opportunity

- We conceive, design, implement and operate complex and sometimes unprecedented systems
- Do they meet stakeholder needs?
- Do they integrate easily, evolve flexibly, operate simply and reliably?
- Well architected systems do!
 - Link benefit to cost
 - High leverage as early design process
 - Source of competitive advantage
Overall Learning Objectives

Students will be able to:

Apply the principles, processes and tools of system architecture to:

- Structure and lead the early, conceptual phases of the product development process

- Support the process through development, deployment, operation and evolution
Learning Objectives

• Discuss systems, systems thinking, products (value and competitive advantage), the PDP and the “role” of architecting in the PDP.

• Analyze and critique the architecture of existing systems, create the architecture of new or improved systems, and produce the deliverables of the architect.
Learning Objectives

• Drive the ambiguity from the upstream process by defining the context and boundaries of the system, interpreting needs, setting goals and defining the externally delivered functions.

• Create the concept for the system, consisting of internal function and form, while thinking “holistically and out of the box” when necessary.

• Manage the evolution of complexity in the system so that goals are met and function is delivered, while the system is comprehensible to all during its design, implementation, operation and evolution.
Learning Objectives

• Challenge and critically evaluate current modes of architecting, and create new synthesized modes.

• Develop for themselves the guiding principles for successful architecting.

To prepare students for their first, second, and third jobs after SDM.

This is a course in *how to think*, not *what to think*
Implicit Subject Objectives

- To be synthetic
 - Scale up existing knowledge
 - Tie together SDM Curriculum
- To encourage a *global* view
- To learn from best practice in architecture (search)
- To learn from new thought in architecture (re-search)
- To leave you with a set of personalized tools for architecting
Expectations

- Act professionally
- Think creatively
- Work in a scholarly manner
- Speak and write clearly and concisely
- Respond punctually
- Whine little
- Have fun
Architecture - Pedagogy

Principles

Roles & Definitions

Frameworks

Cases

Methods & Tools

Themes
Master Schedule

Jan: “Architecture 400”
 Vocabulary
 Architecture
 Analysis of architecture - what is architecture?

Sept - Nov: “Architecture 401”
 Upstream processes (leading to the product case)
 Downstream processes
 Cases and critique or architecture
 Synthesis of Architecture - how to make good architecture

Dec: “Architecture 537”
 Advanced (but important) topics
 – Supply chains
 – Platforms and product families
 – Reuse of legacy elements
Schedule, etc.

- IAP vs. Second “Half”
- Detailed IAP schedule
- Syllabus Package
- Opportunity Sets
 - 1, 2, 3, 4 in assigned groups
 - 5 (Technology Search) in organic groups of like interest (3±1)
- Texts
- Grading
- Dissemination
- Academic Integrity
¿What is Architecture?

- What do you think?
Architecture

- The structure, arrangements or configuration of system elements and their internal relationships necessary to satisfy constraints and requirements. (Frey)

- The arrangement of the functional elements into physical blocks. (Ulrich & Eppinger)

- An abstract description of the entities of a system and the relationship between those entities (Crawley et al.)

- The embodiment of concept, and the allocation of physical/informational function to elements of form, and definition of interfaces among the elements and with the surrounding context. (Crawley)
Definitions - Analysis and Synthesis

- What do the definitions have in common?

- What distinguishes them? What is the underlying cause for this distinction?

- Synthesize a definition that works for you, in your job context.
Consensus Definition: **Architecture**

- The embodiment of **concept**, and the allocation of physical/informational **function** to elements of **form**, and definition of **interfaces** among the elements and with the surrounding **context**. (Crawley)

- **Consists of:**
 - Function
 - Related by Concept
 - To Form

1 - when I introduce a term and define it, I will underline on the chart and include it in the glossary
Several diagrams removed due to copyright restrictions. Comparing plans for beach house and “Florida” house, from http://www.coolhouseplans.com
Concept?
Function?
Form?
Interfaces?
Context?

Architecture – Mechanical

Cable-stayed bridge

Suspension Bridge

Courtesy of Rich Niewiroski Jr.
(http://www.projectrich.com/gallery)

Figure by MIT OCW.
Concept?
Function?
Form?
Interfaces?
Context?

Architectural - Instructional

Kanchan™ Arsenic Filter

Things to be remembered:
- Keep the filter away from direct sunlight. The metal condition in and around the filter should always be good.
- Don't pour the water directly into the mouth. Always place the dispenser before pouring water in the filter.
- The filter contains rice/washed rice, wood, a 20 kg bag of lentils, water, a small tin, and a cloth. All should be kept clean and dry.
- The filter should not be moved or used in another place. If the filter needs to be sited in another place, remove all the materials and rebag the filter in the new place.

1. Wash your hands with soap
2. Remove dirt/recipes and set on a clean surface
3. Stir the granular 1/2 inch of or sand with water
4. Remove turbid water with a cup. Replace the base and stir it with water. Repeat the stirring process for two or three times
5. Discard the turbid water in a dug hole with some saw dust
6. Now the filter can be used again

Courtesy of ENPHO. Used with permission.
Architecture - Thought Assignment

- What is the architecture of common things? What is the concept, function, form, interfaces and context?

- What is the architect trying to achieve?

- What makes an architecture “good”?

Try to internalize what constitutes “an architecture.” This will appear on OS 2 and 4.
Architecting

- An architect works by applying:
 - Relevant modes of thought, including creative and critical thinking
 - The approaches of architecting, including holism, focus, etc.
 - The principles, processes and tools of architecting
 - And a lot of wisdom and experience!
Suggested Process for **Critical Thinking**

- Opportunity, challenge, or reference example identified in context
- Thinker develops an approach option
- Thinker surveys other approach options, then compares the “surveyed” options with each other and the “developed” approach option
- Thinker synthesizes a context-appropriate “best” option
Example: Critical Thinking

- We just did this when talking about architecture:
 - We identified the opportunity when I asked you for your definition of architecture
 - You developed your own definition
 - We listed several others and compared them
 - I asked that you synthesize one that works for you in your context, and I offered one as the working definition for the class
Holism

- Of the Whole
 To think holistically is to encompass all aspects of the task at hand, taking into account the influences and consequences of anything that might interact with the task.
¿ Example: What is the Whole?
(while architecting a product or system)
Holism – Assignment (for life)

- Become a holistic thinker!
- Read - Talk - Think - Listen

Holistic thinking exercise
 - Be ready for each class
 - Be ready for each day of your life!
 - Focus on *Global Forces* in business environment

- What should the foci be this month?
Principles, Methods, Tools

- **Principles** are the underlying and long enduring fundamentals that are always (or almost always) valid.

- **Methods** are the organization of approaches and tasks to achieve a concrete end, which should be solidly grounded on principles, and which are usually or often applicable.

- **Tools** are the contemporary ways to facilitate process, and sometimes applicable.
Examples: Principles, Methods, Tools

<table>
<thead>
<tr>
<th>Principle</th>
<th>Method</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Scale</td>
<td>Science</td>
<td>Engineering Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples: Principles, Methods, Tools

<table>
<thead>
<tr>
<th>Principle</th>
<th>Architecture Of Products</th>
<th>Product Development Processes</th>
<th>Product Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Principles – Example

- Every system operates as an element of a larger system and is itself composed of smaller systems

How could you improve this principle?
Principles – Assignment

- A *Journal of Architecting Principles* should be completed by each student
 - Capture ideas from *all* SDM subjects, other readings and from life experience
 - As a target, codify 8 - 15 *principles* of system architecture (i.e. truths that are fundamental and almost always valid)
 - Due at the end of the subject (in Dec.)
 - Should contain
 - The principle (descriptive and prescriptive)
 - Attribution
 - Short description or application
- Principle No. 1 should be: What is good architecture.
Principle Submission

- “Tag Line Version”
- Descriptive version
- Prescriptive version
- Text which explains the principle, how it would apply to your enterprise
- Citation where it came from

So “every systems operates as a part of a larger system, ...” is what: descriptive or prescriptive? What would the other one be?
The Product Development Process

- The inclusive process of creating a new or modified product, bringing it to “market” and supporting its life-cycle

- It is important to understand the role of architecting in the PDP, and the commonality of good practice in our professions
PDP - Assignment (#3)

Determine what is common to all PDP’s, and what causes them to be different:

- Compare each of the PDP’s that you benchmark and identify the elemental “steps” (there may be 20 to 40 of these). Identify the steps that are common to all or most of your PDP. Also examine the sequence of these steps.

- Synthesize the common PDP steps into one reference process.

- Examine the differences between the reference process and the original benchmark examples. Try to explain why the differences occur.

- Identify the contribution of architecting to the PDP, and the influence of the other parts of the PDP on architecting.
Other Definitions – Assignment (#1)

- Without clear definitions, statements like “architecting complex product/systems to deliver value” will just be stratego-babble
- Your group should develop a consensus definition of:
 - System
 - Complex
 - Value
 - Product
- Principle/Method/Tool (give examples, not definitions)

Cite 1-3 references and your synthesized definition. Give an illustrative example.
Architecture

- Consists of:
 - Function
 - Related by Concept
 - To Form
Form - Defined

- The physical/informational embodiment which exists, or has the potential to exist

- Is what the system “is”

- The \textit{sum} of the \textit{elements}, which are segments (of the whole of) the form

- The \textit{structure} of form - the formal relationships among the elements

- Is a system/product attribute

\textit{Form is Elements + Structure}
Form - Described

- Is created by the architect
- Is in a solution specific domain
- Can be decomposed into physical/informational elements - the decompositional view
- Elements are connected at interfaces. The interfaces define the structure - the structural view
- Is the thing that executes function
- Is the thing that is eventually implemented (built, written, composed, manufactured, etc.)
- Is the thing that is eventually operated (run, repaired, updated, retired, etc.)
Objects

- Defined: An object is that which has the potential of stable, unconditional existence for some positive duration of time
- Can be physical: visible or tangible and stable in form
- Can be informational: anything that can be apprehended intellectually
- Objects have states (which can be changed by processes)
- Objects are linked to nouns
Decomposition of a System

- **Decomposition** is the division into smaller constituents.
- The system object at level 0 decomposes to the element objects at level 1.
- The element objects at level 1 aggregate to the system.
- This is the *whole - part relationship*, so common that it has its own symbol ▲.
Op Amp - Decompositional View

Could you build an amp from such information?
Could you understand how it is laid out?
Could you understand how it works?
Not much real information in the decompositional view!
¿ What is the Form of Simple Systems?

- Each group should examine one of the examples, and describe the *form* of the system
- Describe the elements objects that make up the system object
Example Systems:

- Paper coffee cup
- Pen (ball point or felt tip)
- Notebook or pad of paper
- Stop sign
- Simple code
“Software” Code

n=0
start at first Ø
while Ø remains without an X
 print X at location of Ø
 n=n+1
end_of_while
write n
Elements of Form

- For simple physical systems, the elements for form can be broken down until the smallest useful “atomic unit” is reached: paper cone, plastic tube, sheet of paper
- For simple information systems, the elements of form are a bit more abstract, but it is most useful to stop when a coherent instruction is reached
- For instructional systems, the instruction is an element of form - what the instruction does is its function, and will be discussed in the next lecture
 - \(n = n+1 \)
 - STOP

Courtesy of ENPHO. Used with permission.
Abstraction

- **Abstraction** defined as:
 - expression of quality apart from the object
 - having only the intrinsic nature rather than the form

- Abstraction can be used in both function and form

- Abstraction can be used to characterize and hide more detailed structure and behavior within them, allowing simpler representation of the “surface”

- Examples: cup, pen, routine_name

Figure by MIT OCW.
Decompositional View of a Simple System

Level

0

SYSTEM

1 (down)

Part 1

Part 2

- Theoretically 5-9 elements (7+/− 2), actually 2 to about 9-12
- At level 1 we encounter real or atomic parts (a matter of somewhat arbitrary definitions)
- Tree structure is symbolic of the decompositional view, and suggests what element aggregate to which higher lever element
- Does not represent the actual structural connectivity of the elements (the structure)
Decompositional View of a Simple System - Example

At level 1 we encounter real or atomic parts (a matter of somewhat arbitrary definitions)
Decompositional view of a Medium System

Level

0

1 (down)

Sub-System 1

Sub-System 2

2 (down)

Part 1.1

Part 1.2

Part 2.1

Part 2.1
Decompositional View of a Medium System

- Theoretically 25-81 elements \((7+/\!-2)^2\), actually about 9-12 to about 60-90
- At level 2, we encounter atomic parts
- Least ambiguous objects are defined at levels are 0 and 2
- Intervening level 1 might be real subsystems modules, abstractions, or both
- Actual structural connectivity can occur at either level 1 or 2
Decompositional View of a More Complex System

- Theoretically 125+ elements \((7-2)^3\), actually about 60-90+
- Same drawing as a medium system - except level 2 is no longer made up of atomic parts, but rather further abstractions or modules
- There may be many layers below level 2, which an observer at level 0 barely understands
- Actual structural connectivity can occur at any level
What is the Structure of Form of Simple Systems?

- Each group should examine one of the examples, and describe the *form* of the system.

- Describe the structure among the element objects that make up the system object.
Example Systems:

- Paper coffee cup
- Pen (ball point or felt tip)
- Notebook or pad of paper
- Stop sign
- Simple code
Classes of Structural Connections

- Connections that are strictly descriptions of form:
 - Some notion of spatial location, proximity or topology (e.g. is next to)
 - Some notion of previous assembly/implementation process (e.g. “connected to” means long ago a connecting process took place)

- Connections that are description of function while operating
Spatial/Topological Structural Connections

- One kind of information that can be encoded in structural links is relative spatial location (above, below, to the right of, aligned with, etc.) plus topology:
 - Is contained in, surrounded by, encompasses, encircles
 - Overlaps with, shares part of
 - Is adjacent to, touches
 - Is separate from (near, far, no apparent relation at all)

- Issues of Form, representing positioning that has taken place in the past

This information is conventionally in a schematic or layout drawing
Another kind of information that can be encoded in structural links is information about how the objects were assembled, manufactured, coded, written, etc.:

- Is bonded to, welded to, soldered to, glued to
- Is bolted, fastened
- Pressed against, inserted
- Is compiled with

Issues of form, represent implementation that has taken place in the past

This information is conventionally in an assembly drawing
Whistle - Objects as Elements of Form

Can also be represented as a list
Structure of Elements - Whistle

What do these lines mean??
Op Amp - Decompositional - List

Alternative to graphical representation of the decompositional view is the list representation.

Amp:

- Op Amp
- R_1
- R_2
- Ground Int.
- Input Int.
- Output Int.
- -5 V Int.
- +5 V Int.
- Connectors?
- Ground?
Op Amp - Structural View - Graphical

What do these lines mean? Is this structure describing form?
What is an appropriate way to represent structural information shown in graphic representation in a list representation?
if array[j] > array[j+1] then
 temporary = array[j+1]
 array[j+1] = array[j]
 array[j] = temporary
end if

Software is often already in a list representation. However for more complex code, something like a decompositional view is often all that is easily available.
if array[j] > array [j+1] then
 temporary = array [j+1]
 array[j+1] = array [j]
 array[j] = temporary
end if

For software what is the appropriate way to represent structure of form in the list and graphical representations?
Issues Raised

- How do you identify form independent of function?
- How do you define the atomic part level? For hardware? For software?
- Can you “decompose” an integral part?
- How do you represent the structural interconnections of the elements, as opposed to their “membership” in a system?
- N occurrences of an element - count once or N times?
- Connectors and interface elements - count as a separate element - or combined with other elements?

Disciplines have their own tradition of representing form (decomposition and structure), what is it in your discipline?
Summary - Form

- The physical/informational embodiment which exists, or has the potential to exist
- The sum of elements (objects) related through structure
- Is a system/product attribute created by the architect
- Is what executes function
- Is implemented and operated
- Is decomposed (potentially in layers), the number of which determine: simple - to - complicated
- Is decomposed until the atomic part in encountered (a matter of definition)

Complete description of form requires definition of both elements and structure
Summary to Date

Form = Elements + Structure
Upstream Processes

- General
- Technology Infusion
 - Finding
 - Forecasting
 - Transferring
 - Infusing
Where Does an Architect Find **Upstream** Wisdom?

- **Customer**
 - market need or opportunity
- **Technology**
 - what’s available or might be
- **The Company**
 - corporate strategy, competency
- **Business Environment**
 - competition, global economic, international markets, worldwide suppliers, etc.
Upstream Wisdom From SDM

- Customer - a bit this month, marketing subject, and system engineering subject
- Technology - some this month, 2 design electives, informal network, Management of Technology elective
- The Company - some in this subject, System Project Management, leadership exercises, corporate strategy elective
- Business Environment - marketing subject, your self education!
Three Questions Central to Technology Assessment and Infusion

- What is the forecast for the technology?
 - Where is it? What can it do?
 - What is its readiness?
 - When will it be “ready”?
- Does it address a customer need?
 - Will it infuse value in the product?
- Can our company exploit the technology?
 - Is it within our competence and its extensions?
 - Does our organizational strategy support it?
Finding and Infusing Technology

- Finding Technology
- Understanding, Assessing and Forecasting
- Transferring
- Infusing
Where Do You Find Technology?

- You invent it
- Your existing products
- Competitors’ products
- Your corporate R&D
- Competitors’ corporate R&D
- Universities
- Foreign sources
- Government labs
- Suppliers
- Small companies
- Where else?
How Do You Find Technology?

- Thinking, reading
- Visits
- Papers, articles, reports
- Conferences, shows
- Personal contacts, networks
- Seminars
- How else?
Understanding Assessing, Forecasting

- What is it, how does it work?
 - New “physics”, manufacturing
 - Clever design or combination
- What might it do?
- How does it relate to alternatives?
- How mature is it?
 - What combinations of time, money are required
 - How much further can existing team take it?
- What is Intellectual Property (IP) status?
- What else?
Technology Maturation Model

- Single technology
 the “S” curve

- Platform technology
Technology Readiness Levels (TRLs)

- **TRL 1**: Basic Technology Research
 - Basic principles observed and reported

- **TRL 2**: Technology Development
 - Research to Prove Feasibility

- **TRL 3**: Technology Demonstration
 - Component and/or breadboard validation in laboratory environment

- **TRL 4**: Technology Development
 - Component and/or breadboard validation in relevant environment

- **TRL 5**: System/Subsystem Development
 - System prototype demonstration in a relevant environment (Ground or Space)

- **TRL 6**: Technology Development
 - System/subsystem model or prototype demonstration in a space environment

- **TRL 7**: System Test, Launch & Operations
 - Actual system completed and “flight qualified” through test and demonstration (Ground or Flight)

- **TRL 8**: System Test, Launch & Operations
 - Actual system “flight proven” through successful mission operations

- **TRL 9**: System Test, Launch & Operations
 - Courtesy of NASA.
Transferring Technology

- Corporate alliances and partnerships
- Corporate acquisitions
- Hiring
- Inclusion in supply chain
- Small company as intermediary
- How else?

People are best
Infusing Technology

- Into future product thinking - to create new markets
- Into new platforms - to service new products
- Into new products
- Into existing products
Infusion of Non-robust Technology

New Technology

- Selected for Product 2
- Developed for Product 2

- Selected for Product 1
- Developed for Product 1

- Selected for Product 3
- Developed for Product 3
Flexible Infusion of Robust Technology

- New Technology
- Robustness Optimization

- Selected for Product 2
- Selected for Product 1
- Selected for Product 3

Only

Minor

Adjustments

Needed

Only

Minor

Adjustments

Needed
Technology Search - Assignment #1

- Form organic groups of 3±1 members of similar technical interests
- Conduct search for 3 technologies
- Select one, and analyze it relative to existing technology
- Make a recommendation
- Write a memo that can be submitted to your real boss!
Assignments for Next Time:

- Opportunity Set 1: Definitions
- Opportunity Set 2a: Form of simple systems
- Holistic thinking: Be prepared to discuss current global topics in technical/scientific/economic/political spheres, and their impact on your enterprise
- Thought exercise: what is architecture, what is the architecture of common things, what is good architecture?
- Preparation for next class: read readings and be prepared to come and discuss critically (like in movies about law and business schools!)