Air Transportation System Architecture Analysis

Project Phase I

Advanced System Architecture

Spring 2006

March 23rd, 2006

Presentation by:
Philippe Bonnefoy
Roland Weibel

Instructors: Chris Magee, Joel Moses and Daniel Whitney
Motivation

• The air transportation system is facing and will continue to face significant challenges in terms of meeting demand for mobility

• Current multi-agency effort to establish a roadmap for the “Next Generation of Air Transportation System”

• Navigation in current system under most conditions requires use of fixed-location of current infrastructure to facilitate mobility

• Future (evolved) architecture of the system require understanding of the structure of the current system

• Lack of integrated quantitative analysis of structure of the current system
Objective of the project

- Better understand the architecture of the current system through network analyzes
- Understand
 - the network characteristics of individual system layers
 - Influence of constraints, desired properties (i.e. safety, capacity, etc.) in explanation of network characteristics
 - comparison of network characteristics across different layers, through coupling of infrastructure or comparison of different network characteristics across layers
Overview of the System

<table>
<thead>
<tr>
<th>System layer</th>
<th>Layer attributes</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand layer</td>
<td>Population, income, location of businesses</td>
<td>ArcGIS, Census</td>
</tr>
<tr>
<td>Mobility layer</td>
<td>Movements of People and goods</td>
<td>DB1B database</td>
</tr>
<tr>
<td>Transport layer</td>
<td>Aircraft routes</td>
<td>ETMS, OAG</td>
</tr>
<tr>
<td>Operator layer</td>
<td>Operators Part 121, 135, 91</td>
<td>OAG</td>
</tr>
<tr>
<td>Infrastructure layer</td>
<td>National Airspace System (airports layout and airspace structure)</td>
<td>FAA Form 5010 airport database, airway</td>
</tr>
</tbody>
</table>
Current Progress (examples in next slides)

• Infrastructure Layer:
 – Airspace Structure (Navaids) Analysis
 • Low Altitude routes (Victor Airways)
 • High Altitude routes (Jet routes)

• Transport Layer:
 – Traffic Data (ETMS) Analysis
Preliminary Analysis of the High Altitude (Jet) Route Network

Chart of Jet Routes

Degree Distribution

“Pseudo” Poisson distribution

© 2005 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology
Preliminary Analysis of the Wide-Body/Narrow Body & Regional Jet Flight Network

Wide Body Jets

Narrow Body Jets

(Degree Distribution)

Scale free with exponential cut-off

© 2005 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology
Preliminary Analysis of the Light Jet Flight Network

Image removed for copyright reasons.

Light Jets

Degree Distribution

Scale free with a slow exponential cut-off
Potential Additional Data Acquisition

- 10% Ticket Sample – DB1B Database
- Ground Delay Program Data
- Additional ETMS Days
- Air Traffic Control Sectors And Interfaces
- Additional Schedule Data (OAG)
Potential Future Areas of Investigation

- **Cross-Layer Comparisons**
 - Infrastructure, transport, and mobility layers
 - Domain expertise input on processes at work to create network structure
- **Intra-Layer Comparisons (Transport Layer)**
 - Network differences by aircraft type, or by air carrier
- **Influence of nodal constraints**
 - Airport and airspace capacity as nodal constraints on network growth
- **Maximum Route Efficiency Achievable**
 - Merging of airport and airway data
- **Motifs/Substructure**
 - Application of motif/coarse-graining analysis to identify common patterns in network