Air Transportation System Architecture Analysis

Project Phase II
Advanced System Architecture
Spring 2006

March 23rd, 2006

Presentation by:
Philippe Bonnefoy
Roland Weibel

Instructors: Chris Magee, Joel Moses and Daniel Whitney
Motivation

• The air transportation system is facing and will continue to face significant challenges in terms of meeting demand for mobility

• Current multi-agency effort to establish a roadmap for the “Next Generation of Air Transportation System”

• Navigation in current system under most conditions requires use of fixed-location of current infrastructure to facilitate mobility

• Future (evolved) architecture of the system require understanding of the structure of the current system

• Lack of integrated quantitative analysis of structure of the current system
Objective of the project

• Better understand the architecture of the current system through network analyzes

• Understand
 – the network characteristics of individual system layers
 – Influence of constraints, desired properties (i.e. safety, capacity, etc.) in explanation of network characteristics
 – comparison of network characteristics across different layers, through coupling of infrastructure or comparison of different network characteristics across layers
Overview of the System

System layer
- **Demand layer**: Population, income, location of businesses
- **Mobility layer**: Movements of People and goods

Layer attributes
- **Data sources**
 - ArcGIS, Census
 - DB1B database

Transport layer
- Aircraft routes
- Data sources: ETMS, OAG

Operator layer
- Crews & Pilots

Infrastructure layer
- National Airspace System (airports layout and airspace structure)
- FAA Form 5010 airport database, airway

Ground layer
- Ground

Airspace layer
- Airspace

Scheduled
- Scheduled

On-Demand
- On-Demand
Infrastructure Layer Analysis
Navigation Infrastructure Analysis

- **Nodes**: FAA-Defined Navigational Aids of Different Types
 - VORs, Reporting Points, etc
- **Links**: Air Routes Between Nodes
 - Victor (low alt) & Jet Routes (high alt)

- **Network Metrics**
 - Clustering Coefficient (Watts method) – Proxy for robustness of network
 - Correlation Coefficient

- **Architecture Analyses**
 - Shortest-Path Navigational vs. Direct Distance between Airports
 - Nodal Betweenness/Centrality
Degree Sequence

Victor Airways
- All Points (left)
- VOR/VORTAC (below)

Jet Routes
- All Points (left), VOR/VORTAC (right)

<table>
<thead>
<tr>
<th>NavAid Network</th>
<th>n</th>
<th>m</th>
<th>C (Watts)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Routes</td>
<td>1787</td>
<td>4444</td>
<td>0.1928</td>
<td>-0.0166</td>
</tr>
<tr>
<td>Victor Airways</td>
<td>2669</td>
<td>7635</td>
<td>0.2761</td>
<td>-0.0728</td>
</tr>
</tbody>
</table>
Navigation Architecture Analysis

• End Nodes: Navaids corresponding to published airports

• Geodesic (shortest path by navigational distance) computed between top 1,000 airport pairs
 – Airports ranked based on 2004 FAA traffic data
 – A-Star search algorithm implemented to find shortest distance along network

• Results – Dynamics Along Network
 – Navigational Distance Compared to Shortest Path Distance by Airport Ranking – Maximum “direct-to” efficiency
 – Betweenness centrality to be calculated for navigation nodes as measure of their utilization
 • Number of shortest-paths through nodes as a proportion to total shortest paths
Navigation Distance Results

\[\hat{d} = \sum_{i}^{n_{\text{airports}}} \sum_{j,j>i}^{n_{\text{airports}}} d_{ij} \]

\[\%_{\text{reduction}} = 1 - \frac{\hat{d}}{d} \]
Transport Layer Analysis
Preliminary Analysis of the Wide-Body/Narrow Body & Regional Jet Flight Network

Wide Body Jets Narrow Body Jets

Regional Jets

Degree Distribution

Cumulative Probability p(>k)

© 2005 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology
Analysis of the Wide-Body/Narrow Body & Regional Jet Route Network

Degree Distribution Analysis

Coefficient of the degree distribution power law function: \(\gamma = 1.49 \)

Hypotheses for the exponential cut-off:
- Nodal capacity constraints
- Connectivity limitations between core and secondary airports
- Spatial constraints

Network Characteristics

<table>
<thead>
<tr>
<th>Network</th>
<th>n</th>
<th>m</th>
<th>Density</th>
<th>Clustering coeff.</th>
<th>r</th>
<th>Centrality vs. connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled transportation</td>
<td>249</td>
<td>3389</td>
<td>0.052</td>
<td>0.64</td>
<td>-0.39</td>
<td>13/20 most central also part of the top 20 most connected</td>
</tr>
</tbody>
</table>
Preliminary Analysis of the Light Jet Route Network

Image removed for copyright reasons.

Light Jets

Degree Distribution

Cumulative Frequency (n(>k))

© 2005 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology
Degree distribution identified as resulting from sub-linear preferential attachment.

\[n_k = a k^{-\gamma} \exp\left[-\mu \left(\frac{k^{1-\gamma} - 2^{1-\gamma}}{1-\gamma} \right) \right] \]

with: \(\gamma = 0.57 \)
\[\mu = 0.16 \]
\[a = 0.13 \]
Interactions between Transport Layers

- Scheduled Traffic WB/NB/RJ
- Unscheduled Traffic LJ

Transport layer

- On-Demand
- Scheduled

- TEB
- CMH
- CLT
- ATL
- ORD
- SEA
- DFW

© 2005 Philippe A. Bonnefoy, Roland E. Weibel, Engineering Systems Division, Massachusetts Institute of Technology
Demand Layer Analysis
Analysis of the Demand Layer

- Single Layer Analysis

Population/Airport Gravity Model

\[b_i = \sum_{ct \in C_i} p_{ct} \quad s.t. \quad C_i = \left\{ ct \mid d_{ct,i} = \min_j d_{ct,j} \right\} \]

Notations:

- \(p_{ct} \): population of census track \(ct \)
- \(b_i \): size of population basin around airport \(i \)
- \(ct \): census track
- \(d_{ij} \): Euclidean distance

Based on 66,000 Census Track data

- Non scale free nature of distribution of population around airports
Questions & Comments

Thank you