Basic Network Metrics and Operations

• Meshness ratio
• Degree correlation
 – Joint degree distribution
 – K-nearest neighbors
 – Pearson degree correlation
• Rich club metric
• Degree-preserving rewiring
• Generating a graph that has a specified degree sequence
• Finding Pearson degree correlation
• Finding communities
Meshness Ratio

- Exploits Euler’s formula for planar graphs
- Is applied to non-planar graphs as well, not used enough for a basis for comparison to have built up yet
- Meshness = number of closed faces = m-n+2
- Max meshness = 2n-4
- Ratio = (m-n+2)/(2n-4)
- This varies between zero and 1
- “Meshy” networks seem to have mr ~ 0.3 but these are usually almost planar, such as metro systems
Meshness Ratio of 21 Metro Systems

\[y = 4.0214x + 1.8735 \]

\[R^2 = 0.9508 \]

\[\langle k \rangle = 4M + 2 \]
Meshness of Random Networks

Meshness Ratio of Random Networks, $n = 1000$
CAIDA Paper on Internet Structure

- Nice review and comparison of many metrics
- Follows up early 2000s papers purporting to find the structure of the internet
- Shows that there are three ways to do this, each approximate, using different methods, each with a bias
- Shows that each way gives different results, providing caution about artifacts inherent in data collection
- Joint Degree Distribution (JDD) seems to be the best metric
Degree Correlation r

- This is a subset of “homophily” meaning the extent to which nodes are alike.
- Degree correlation is measured using the Pearson correlation function.
- Also called “assortativity” and “disassortativity” in social network analysis.
- r is positive if nodes of similar degree are linked - assortative (not the same as big to big).
- r is negative if nodes of dissimilar degree are linked - disassortative (not the same as big to small).
- Bigger magnitude of r indicates higher tendency for the specified linkage.
Calculating r

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

x y
1 2 3
1 2 2
2 3 1
2 3 2
2 3 2
3 1 3
4 2 3
4 2 3

$r = -0.676752968$ using Pearson function in Excel

Note: if all nodes have the same k then $r = 0/0$
Calculating x-bar

\[\bar{x} = \frac{\text{sum of column values}}{\text{number of column values}} \]

Each node of degree \(k \) creates \(k \) rows with \(k \) in each row.

Number of rows = sum of entries in \(kvec(A) = \text{sum}(k_i) \)

\[kvec(A) = 2 \ 3 \ 1 \ 2 \ 2 \]

\[\text{sum}(kvec(A)) = 10 \]

Sum of the \(k \) row entries for each \(k = k \cdot k = k^2 \)

Sum of all such row entries = \(\text{sum}(k_i^2) = 22 \)

\[\bar{x} = \frac{\sum k_i^2}{\sum k_i} = \frac{1}{n} \sum_{i=1}^{n} k_i^2 = \frac{<k^2>}{<k>} = 2.2 \]

\[\bar{x} \geq \frac{<k>^2}{<k>} = <k> \text{ so } \bar{x} \text{ is a measure of the variation in } k \]
Matlab for Pearson (symmetric)

\[r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} \]

Look at numerator, ignore xbar for the moment

\[\sum (x_i y_j) = x_i \delta_{ij} y_j = x^T A x \]

\[\delta_{ij} = 1 \text{ if } i \text{ links to } j \]
\[\delta_{ij} = 0 \text{ if } i \text{ does not link to } j \]

Essentially the calculation is a quadratic form. Pearsondir does the calculation for asymmetric networks.
function prs = pearson(A)
% calculates pearson degree correlation of A
[rows,colms]=size(A);
won=ones(rows,1);
k=won'*A;
ksum=won'*k';
ksqsum=k*k';
xbar=ksqsum/ksum;
num=(k-won'*xbar)*A*(k'-xbar*won);
kkk=(k'-xbar*won).*(k'.^5);
denom=kkk'*kkk;
prs=num/denom;
K-nearest neighbors and Joint Degree Distribution

- These seek similar info to Pearson but are more general than Pearson, which condenses all the info into a single number
- knn plots the average degree of neighbors of nodes that have degree k
 - Rising knn indicates positive degree correlation
 - Falling knn indicates negative degree correlation
- JDD1 plots cross-correlation of degree of each node with every other neighboring node
 - Shape of plot indicates sense of degree correlation
Network for V-8 Engine
Degree Distribution for V8 Engine
K Nearest Neighbors for V8

Missing marks indicate that there are no nodes with that degree.
Joint Degree Distribution for V8
Degree Sequence of Random Network:

\[\langle k \rangle = 6 \]
Knn for Random = $z + l$
JDD for Random Matrix

Joint Degree Distribution for 3000 node random network
Rewiring

- A way to deliberately transform a graph
- Several ways this is done
 - Unhooking one end of an edge and hooking it in somewhere else
 - Adding a new edge
 - Pairwise rewiring that preserves the original degree sequence
 - This can disconnect the graph unless you take care to reject rewirings that do so
Rewiring - 2

Unhook-rehook links

Add links

Preserving degree

FIG. 1. One elementary step of the local rewiring algorithm. A pair of edges A—B and C—D is randomly selected. They are then rewired in such a way that A becomes connected to D, and C - to B, provided that none of these edges already exist in the network, in which case the rewiring step is aborted, and a new pair of edges is selected. The last restriction prevents the appearance of multiple edges connecting the same pair of nodes.

Detection of Topological Patterns in Complex Networks: Correlation Profile of the Internet

Sergei Maslov¹, Kim Sneppen²,³, Alexei Zaliznyak¹

arXiv:cond-mat/0205379 v2 6 Nov 2002
Degree-preserving Pair-wise Rewiring

- Picks two pairs of nodes at random and swaps their links so that each node retains its nodal degree
- Usually used to randomize a network
 - Rewire at random, a lot
- Can also be used to change a network’s degree correlation or clustering coefficient
 - Rewire but accept only those results that drive r or c in the desired direction
 - Each network has a max and min r that are different from ± 1 (papers by Whitney and Alderson, and Li and Alderson)
- Note that this process does not necessarily preserve connectedness, so if this is important, check before accepting each rewiring
Degree-preserving Rewiring Routines

• Maslov-Sneppen routines (the original)
• rgrow, rshrink, cgrow seek to modify the network via directed rewiring to have a different degree correlation or clustering coefficient while preserving the degree sequence and connectedness
 – cgrow is really slow! Use Volz’ routine
• rgrowd (does not bother to check for connectedness)
• rgrowdgoal (grows r to a desired value called goal, ignores connectedness)
• You can easily write your own to do what you want
Rewired V8 Engine

Maslov-Sneppen randomizing

Volz clust reduction
JDD of V8 After Maslov-Sneppen Randomizing

Compare to slide 15
Finding Communities

• Big topic in social network analysis
• Many algorithms exist, based on different principles, several in UCINET
• Uses the idea of edge betweenness
• Implementation by ESD PhD student Mo-Han Hsieh seems to be more accurate than the implementation in UCINET
Recursive Removal of Highest Betweenness Edge Generates Communities
% This program conducts Newman-Girvan algorithm. Written by Mo-Han Hsieh.
% The input is, A, the adjacency matrix, represented by its edgelist in the file TEST.txt.
% 'Directed' controls whether or not A is directed a network.
% For directed network: Directed=1; for non-directed network: Directed=0
% TarGroupNum is the # of desired communities.
% If TarGroupNum>0, the program will stop at the desired # of communities.
% Output: QRecord2, dendrogramRecord, and MarkCut
% QRecord2: [mainNum, singletonNum, Q], where mainNum is the # of
% components that have at least two nodes as members, SingletonNum is the #
% of singletons, and Q is the Q defined by Newman-Girvan.
% dendrogramRecord: First row is mainNum, second row is singletonNum, and
% the third row is Q, and the rest rows is the partition of nodes (the same
% format as specified in UCINET).

A1=load('TEST.txt');
outputFileName1='Q_resultTEST';
outputFileName2='dendrogramTEST';
outputFileName3='CutSequenceTEST';

m=max(max(A1(:,1:2)));
% This code builds the adjacency matrix from the edgelist in TEST.txt
% You can change the code to read A directly and omit reading TEST.txt
A=zeros(m,m);
for i=1:size(A1,1)
 A(A1(i,1),A1(i,2))=1;
end
Directed=1;
TarGroupNum=0;
Input file TEST.txt

>> type TEST.txt

1 2
1 3
1 4
1 5
2 1
2 3
3 1
3 2
4 1
4 6
5 1
5 6
6 4
6 5
There are three candidate partitions of the network, each listed in a column. Reading the first two rows together, one column at a time, we see that the first partition has no main component (zero in row 1) and instead consists of 6 isolated nodes (6 in row 2). The second has one main component and three isolates, while the third has two main components and no isolates. The third row gives Q for each of these, and this is maximum for the third column. The remaining rows contain the community numbers for the 6 respective nodes, in a format suitable for use in UCINET if you want to use Netdraw to draw the network and color the communities. In column 1 we see that each node is in its own community, numbered 1 - 6. In the second column we see that nodes 1 - 3 are in community 1 while 4 - 6 are isolates in communities 2 - 4 respectively. In column 3 we see that nodes 1 - 3 are in community 1 while nodes 4 - 6 are in community 2.
Rich Club Metric

- Measures the extent to which the high degree nodes link to each other
- A subset of Pearson degree correlation since it focuses on the high degree nodes
- Large RCM indicates that high degree nodes link to each other
- Small RCM indicates that they do not
- Base case is a random network with the same degree sequence - ignoring this leads to erroneous conclusions except if the most random equivalent is correlated
- Networks with high RCM can still have $r < 0$
- Ref: paper by Colizza, et al

“Detecting rich-club ordering in complex networks,” V. COLIZZA, A. FLAMMINI, M. A. SERRANO AND A. VESPIGNANI*
*Nature Physics 15 January 2006; doi:10.1038/nphys209
Generating a Graph with a Specified Degree Sequence

• Not any string of numbers qualifies as a degree sequence of a network that is simple and connected
 – Simple: no self-loops, no multiple links between nodes
• Erdos-Gallai theorem tests if a degree sequence is “graphic” (routine isgraphic.m)
• Generating the graph is fraught and often ends up incomplete or disconnected, or else it has some self-loops and multiple edges between nodes
Random Graph Realization Summary

<table>
<thead>
<tr>
<th>Function ⇒ Routine or folder ⇧</th>
<th>Generate the degree sequence</th>
<th>Generate the graph from the degree sequence</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree_dist</td>
<td>Use it to generate most distributions except power law</td>
<td>No</td>
<td>First few lines of random_graph</td>
</tr>
<tr>
<td>random_graph</td>
<td>Most distributions except power law</td>
<td>Yes</td>
<td>Graph generation is slow for (n > 100 - 200)</td>
</tr>
<tr>
<td>erdosRenyi in folder randGraphs</td>
<td>Watts-strogatz grids</td>
<td>Yes plus a plot</td>
<td>Only one type of graph</td>
</tr>
<tr>
<td>sfng in folder Barabasi-Albert</td>
<td>Power law with (2 < k < 3) typically</td>
<td>As above</td>
<td>As above</td>
</tr>
<tr>
<td>Folder Volz</td>
<td>No</td>
<td>Generates a symmetric edge list</td>
<td>Can choose the clustering coeff</td>
</tr>
<tr>
<td>buildSmax</td>
<td>No</td>
<td>Builds graph with max positive degree correlation</td>
<td>Only one type of graph</td>
</tr>
</tbody>
</table>
Random (Poisson) Networks

- \text{randmatrix}(n, p);
- Since $p = z/n$, you can write \text{randmatrix}(n, z/n);
- This generates the adjacency matrix for a random network of n nodes having probability p of a link between any pair of nodes chosen at random
- The degree distribution is poisson with average $= z$, clustering coefficient $\sim p$ and $r \sim 0$
- Original theory due to Erdös and Renyi so these are often called ER random graphs
random_graph.m

% Random graph construction routine with various models
% Gergana Bounova, October 31, 2005

function [adj] = random_graph(N,p,E,distribution,fun,degrees)

% INPUTS:
% N - number of nodes
% p - probability, 0<=p<=1
% E - fixed number of edges
% distribution - probability distribution: use the
% "connecting-stubs model"
% generation model
% choices are uniform, normal, binomial, exponential, geometric
% set parameters by modifying the code
% fun - customized pdf function, used only if distribution =
% 'custom'
% degrees - particular degree sequence, used only if distribution =
% 'sequence'

% OUTPUTS: adj - adjacency matrix of generated graph (symmetric)
% Only the first argument is needed, but if any number of arguments is
% provided, all up to that number must be provided, even though
% only N and the kind of distribution would be used. Others, like E,
% will be ignored

Courtesy of Gergana Bounova. Used with permission.
function [Nseq] = degree_dist(N,p,distribution)
% Random graph degree sequence construction routine with various models
% Gergana Bounova, October 31, 2005, modified by Whitney 1-8-08
% INPUTS:
% N - number of nodes
% p - probability, 0<=p<=1
% distribution - probability distribution name, used below
% choices are ‘uniform’, ‘binomial’, ‘normal’, ‘exponential’
% change parameters in the code below to get mean, variance, etc

% OUTPUTS: NSeq - degree sequence drawn from the specified distribution

Courtesy of Gergana Bounova. Used with permission.
Example Calls to random_graph

random_graph(10)
random_graph(10,0.1,20)
random_graph(10,0,0,'normal')
random_graph(10,0,0,'custom',@mypdf)
degs = [3 1 1 1];
random_graph(10,0,0,'custom',@mypdf,degs)
Volz’ Algorithm

- Originally intended to generate a graph with specified degree sequence and specified clustering
- Getting the right clustering is difficult
- Volz’ method is fast and can be used to generate a graph with any degree sequence and zero clustering
- It is in Java and must be executed from the operating system
- But the Matlab command window is an operating system shell if you use “!” to start the command
Script for Volz Routine

% network_generator_script
% script to generate random networks with given degree sequence
% Java executable RandomClusteringNetwork.jar must be in your matlab
directory

N=100
p=0.1
E=10
distribution='normal'
fun=1
degrees=1
stop=1

Nseq = degree_dist(N,p,E,distribution,fun,degrees,stop);
Nseqabs=abs(Nseq); %protect against negative values
Nseqint=int16(Nseqabs); %Volz routine requires integers

dlmwrite('degdist.txt',Nseqint,'	') %Volz routine requires tab delimited input
!java -jar RandomClusteringNetwork.jar degdist.txt 100 .001 output.txt % n = 100, desired clust =
% if you use 0.0 for desired clust the program will crash!
outputedges=dlmread('output.txt'); %Volz routine generates a symmetric edge list
outputadj=adjbuilde(outputedges);
kvoutputadj=kvec(outputadj);
khatoutputadj=khat(outputadj);
sigmaoutputadj=stdev(kvoutputadj)
erdosRenyi.m

- Actually this routine makes a Watts-Strogatz random graph, not a Poisson (ER) random graph
- It starts from a ring mesh where \(k = K_{\text{reg}} \) at each node (only even values of \(k \) should be used)
- With probability \(p \) it unhooks one end of a link and puts it down on another node
- This is not the same \(p \) as in randmatrix
- This kind of rewiring preserves the networks’ \(z \) but does not preserve the degree sequence
Watts-Strogatz Small World Generator

function [G]=erdosRenyi(nv,p,Kreg)
%Function [G]=erdosRenyi(nv,p,Kreg) generates a random graph based on
%the Erdos and Renyi algorithm where all possible pairs of 'nv' nodes are
%connected with probability 'p'. It does this by creating a connected
%regular grid with k = Kreg at every node and then rewire. It does not
%protect against disconnecting the network or isolating nodes.
%
% Inputs:
% nv - number of nodes
% p - rewiring probability
% Kreg - initial node degree of for regular graph (use 1 or even numbers)
%
% Output:
% G is a structure implemented as data structure in this as well as other
% graph theory algorithms.
% G.Adj - is the adjacency matrix (1 for connected nodes, 0 otherwise).
% G.x and G.y - are row vectors of size nv wiht the (x,y) coordinates of
% each node of G.
% G.nv - number of vertices in G
% G.ne - number of edges in G
% Created by Pablo Blinder.
Watts-Strogatz Examples Using erdosRenyi Code, \(n = 200, K_{reg} = 4 \)

- \(p = 0 \)
- \(p = 0.05 \)
- \(p = 0.15 \)
- \(p = 0.35 \)
Watts-Strogatz Model

\[
<\ell> = \frac{n}{2z} = \frac{n}{2} <k>
\]

when \(p \sim 0 \)

\[
C = \frac{3(z/2 - 1)}{2(z-1)} (1-p)^3
\]
SFNG

- Text from the “read me:”
- B-A Scale-Free Network Generation and Visualization
- By Mathew Neil George
- The *SFNG* m-file is used to simulate the B-A algorithm and returns scale-free networks of given sizes.

Here is a small example to demonstrate how to use the code. This code creates a seed network of 5 nodes, generates a scale-free network of 300 nodes from the seed network, and then performs the two graphing procedures.

```
seed =[0 1 0 0 1;1 0 0 1 0;0 0 0 1 0;0 1 1 0 0;1 0 0 0 0]
Net = SFNG(300, 1, seed);
CNet(Net) % draws the graph
diagnose_matrix(Net,20) % Gergana's routine. Tells you the exponent
%PL_Equation = PLplot(Net) neets "fit"
```
SFNG Output

Fit for power law: $-2.3227x + 5.4084$