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1 Introduction 

We are going to use the exponential response formula and complex arithmetic to understand 
the notions of impedance and phasor diagrams for electrical circuits. 
We’ll see that capacitors and inductors in a circuit have an impedance, which generalizes 
the notion of resistance across a resistor. (In fact, we will consider resistance to be a type 
of impedance.) We will see that the rules for combining impedances in series or parallel are 
exactly the same as those for resistance. 
The phasor diagram tells us about the output current and the voltages across the various 
components in a circuit. It captures graphically the phase angle and phase differences 
between them. 

2 Complex gain 

If we have a linear, time invariant system with input 𝐵 cos(𝜔𝑡) then we know the output is 
𝑔(𝜔)𝐵 cos(𝜔𝑡 − 𝜙(𝜔)). Here, 𝑔(𝜔) is the real gain and 𝜙(𝜔) is the phase lag. 
If we use complex replacement to change the input 𝐵 cos(𝜔𝑡) to 𝐵𝑒𝑖𝜔𝑡, then the output is 
𝐺(𝑖𝜔)𝐵𝑒𝑖𝜔𝑡. We call 𝐺(𝑖𝜔) the complex gain. 
Example 1. Consider the system 𝑋″ + 8𝑋′ + 7𝑋 = 𝐹 ′(𝑡), with 𝐹 (𝑡) the input. Find the 
real gain, phase lag and complex gain. 
(Note: For circuits, we will use capital letters for variables and parameters. We will also 
add tildes to indicate a complexified sinusoidal function.) 

Solution: To find gain and phase lag, we let the input be 𝐹(𝑡) = 𝐵 cos(𝜔𝑡). We start by 
complexifying the equation: 

�̃�″ + 8�̃�′ + 7�̃� = (𝐵𝑒𝑖𝜔𝑡)′ = 𝑖𝜔𝐵𝑒𝑖𝜔𝑡, where 𝑋 = Re(𝑋).̃ 

We then use the exponential response formula to solve this. The characteristic polynomial 
is 𝑃(𝑟) = 𝑟2 + 8𝑟 + 7. So the ERF implies 

𝑖𝜔𝐵𝑒𝑖𝜔𝑡 𝑖𝜔 �̃�𝑝(𝑡) = = ⋅ 𝐵𝑒𝑖𝜔𝑡.𝑃 (𝑖𝜔) 7 − 𝜔2 + 8𝑖𝜔 

𝑖𝜔 This gives us the complex gain, 𝐺(𝑖𝜔) = 7 − 𝜔2 + 8𝑖𝜔 
. 

Now, we write 𝐺(𝑖𝜔) in polar form, 𝐺(𝑖𝜔) = |𝐺(𝑖𝜔)|𝑒−𝑖𝜙(𝜔). 
𝜔 8𝜔 |𝐺(𝑖𝜔)| = √(7 − 𝜔2)2 + 64𝜔2 

. Since Arg(7 − 𝜔2 + 8𝑖𝜔) = tan−1 (7 − 𝜔2 ) in Q1 or Q2, we 

have 

8𝜔 𝜙(𝑖𝜔) = − Arg(𝐺(𝑖𝜔)) = −(Arg(𝑖𝜔)−Arg(7−𝜔2+8𝑖𝜔)) = −𝜋
2 +tan−1 ( in Q1 or Q4.7 − 𝜔2 ) 

1 
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So, 
𝑤 𝑤 �̃�𝑝(𝑡) = √(7 − 𝜔2)2 + 64𝜔2 

⋅𝐵𝑒𝑖(𝜔𝑡−𝜙(𝜔)) ⇒ 𝑋𝑝(𝑡) = Re(�̃�𝑝) = √(7 − 𝜔2)2 + 64𝜔2 
𝐵 cos(𝜔𝑡−𝜙(𝜔)). 

Thus, the gain is 𝑔(𝜔) = √(7 − 𝜔2
𝑤
)2 + 64𝜔2 

and the phase lag is 𝜙(𝜔). 

Side notes: 1. 𝐺(𝑖𝜔) = 𝑔(𝜔)𝑒−𝜙(𝑤). 
2. If we let the input be 𝑒𝑠𝑡, where 𝑠 is any complex number, then the output is 𝐺(𝑠)𝑒𝑠𝑡.
𝐺(𝑠) is known as the transfer or system function of the system. 

3 General definition of impedance 

Later we will discuss the meaning of impedance in circuits. For now, we can give a definition 
in terms of systems. 
For a linear, time invariant system, we assume the input is 𝐵 cos(𝜔𝑡). For this input, the 

1complex impedance is 𝑍(𝜔) = 𝐺(𝑖𝜔) , where 𝐺(𝑖𝜔) is the complex gain. 

1In Example 1, the complex impedance is 𝑍(𝜔) = 𝐺(𝑖𝜔) 
= 7 − 𝜔2 + 8𝑖𝜔. 

1 1The real impedance is |𝑍(𝜔)| = |𝐺(𝑖𝜔)| = 𝑔(𝜔) . 

3.1 Resistance as impedance 

Consider a circuit that consists of a, possibly time varying, input voltage 𝑉𝑖𝑛(𝑡) in volts and 
a resistor with resistance 𝑅 in Ohms. The voltage drives a current 𝐼(𝑡) around the circuit. 

Vin(t) R

I(t)

1Ohm’s law says 𝑉𝑖𝑛(𝑡) = 𝑅𝐼(𝑡) or 𝐼(𝑡) = ⋅ 𝑉𝑖𝑛(𝑡).𝑅 
We can consider this to be a system with input 𝑉𝑖𝑛(𝑡) and output 𝐼(𝑡). (It is a very simple 
linear, time invariant system.) 

If we have complexified input 𝑉𝑖𝑛̃ (𝑡) = 𝑒𝑖𝜔𝑡, then the complexified system is 𝑅𝐼 ̃ = 𝑉𝑖𝑛̃ (𝑡).
1̃ 1 ̃So, 𝐼(𝑡) = 𝑅 𝑉𝑖𝑛(𝑡). This implies the complex gain is 𝐺(𝑖𝜔) = 𝑅 

1Thus, the impedance 𝑍(𝜔) = = 𝑅. For this simple circuit, the impedance is the 𝐺(𝑖𝜔) 
same as the resistance. 
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3.2 Resistance in series and parallel 

For future reference, let’s recall that two circuits with two resistors 𝑅1 and 𝑅2 can be 
reduced to an equivalent circuit with a single resistor 𝑅. 
If 𝑅1 and 𝑅2 are in series, then 𝑅 = 𝑅1 + 𝑅2. 

Vin(t)

R1 R2

I(t)

≈ Vin(t)

R = R1 +R2

I(t)

Resistors in series: Both circuits produce the same output 𝐼(𝑡) for a given input.
1 1 + 1If 𝑅1 and 𝑅2 are in parallel, then 𝑅 satisfies the formula = .𝑅 𝑅1 𝑅2 

Vin(t)

R1

R2

I(t)

≈ Vin(t)

R

1
R = 1

R1
+ 1

R2

I(t)

Resistors in parallel: Both circuits produce the same output 𝐼(𝑡) for a given input. 
Summary: For resistors in series, add the resistances; For resistors in parallel, add the 
complex gains. The same will be true of impedances in general. 

4 Simple circuit physics 

The picture at right shows an inductor, capacitor and resistor in series with a driving voltage 
source. 

𝐼(𝑡) is the current in the circuit in amps. 
𝐿 is the inductance in henries. 
𝑅 is the resistance in ohms. 
𝐶 is the capacitance in farads. 
𝑉𝑖𝑛(𝑡) is the input voltage to the circuit. 
𝑄(𝑡) is the charge on the capacitor, so 𝐼(𝑡) = 𝑄′(𝑡). 

Vin(t)

L

R

C

I(t)

VL(t)

VR(t)

VC(t)

From physics we get that the voltage drops across each of the circuit elements are 

𝑄 𝑉𝐿 = 𝐿𝐼′ = 𝐿𝑄″, 𝑉𝑅 = 𝑅𝐼 = 𝑅𝑄′, 𝑉𝐶 = (1)𝐶 
. 
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The amazing thing is that this and Kirchhoff’s voltage law (KVL) is all the physics we 
need to understand this circuit. The rest is linear constant coefficient DEs and complex 
arithmetic. 

4.1 The basic differential equations 

Kirchoff’s voltage law (KVL) says the voltage drop around a closed loop is 0. The convention 
is that 𝑉𝑖𝑛 gives the voltage gain in the direction of the current, while 𝑉𝐿, 𝑉𝑅, 𝑉𝐶 all give 
voltage drops. So KVL implies 

𝑉𝐿 + 𝑉𝑅 + 𝑉𝐶 = 𝑉𝑖𝑛. 

Now using the given formulas for the voltage drops, we get the following differential equa-
tions. 

𝐿𝐼′ + 𝑅𝐼 + 𝐶
1 𝑄 = 𝑉𝑖𝑛(𝑡) (2) 

𝐿𝑄″ + 𝑅𝑄′ + 𝐶
1 𝑄 = 𝑉𝑖𝑛(𝑡) (Use 𝐼 = 𝑄′ in the first DE.) (3) 

𝐿𝐼″ + 𝑅𝐼′ + 𝐶
1 𝐼 = 𝑉𝑖𝑛(𝑡)′ (Differentiate the first DE and use 𝐼 = 𝑄′ .) (4) 

5 Complex impedance and Ohm’s law for circuits 

We make the crucial assumption of sinusoidal input (alternating current): 

𝑉𝑖𝑛(𝑡) = 𝑉0 cos(𝜔𝑡). 

In the following, we will add a tilde to indicate a complexified quantity, e.g., if 𝑉𝑖𝑛(𝑡) = 
𝑉0 cos(𝜔𝑡), then 𝑉𝑖𝑛̃ (𝑡) = 𝑉0𝑒𝑖𝜔𝑡. 
First, we apply complex replacement to Differential Equation 4: 

𝐿𝐼″̃ + 𝑅𝐼′̃ + 𝐶
1 𝐼 ̃ = 𝑉𝑖𝑛̃ ′ (𝑡) = 𝑖𝜔𝑉0𝑒𝑖𝜔𝑡. (5) 

This has characteristic polynomial 𝑃 (𝑟) = 𝐿𝑟2 + 𝑅𝑟 + 𝐶
1 . So, the exponential response 

formula gives the solution 

𝑖𝜔𝑉0𝑒𝑖𝜔𝑡 𝑖𝜔𝑉0𝑒𝑖𝜔𝑡 
̃𝐼(𝑡) = =𝑃 (𝑖𝜔) −𝐿𝜔2 + 𝑅𝑖𝜔 + 1/𝐶 

. 

Dividing both numerator and denonimator by 𝑖𝜔 changes this formula to 

𝑉0𝑒𝑖𝜔𝑡 
̃ ̃𝐼(𝑡) = = 𝐺(𝑖𝜔)𝑉0𝑒𝑖𝜔𝑡 = 𝐺(𝑖𝜔)𝑉𝑖𝑛(𝑡),𝑖𝐿𝜔 + 𝑅 + 1/(𝑖𝐶𝑤) 

1where 𝐺(𝑖𝜔) = 𝑖𝐿𝜔 + 𝑅 + 1/(𝑖𝐶𝜔) 
is the complex gain for the system. 
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Finally, the complex impedance of the system is 

1 1𝑍(𝜔) = 𝐺(𝑖𝜔) 
= 𝑖𝐿𝜔 + (6)𝑖𝐶𝜔 

+ 𝑅. 

Now, since ̃ 𝑉𝑖𝑛̃ (𝑡), we have 𝐼(𝑡) = 𝐺(𝑖𝜔) 

̃𝑉𝑖𝑛̃ (𝑡) = 𝑍(𝜔)𝐼(𝑡). 

This is the complex version of Ohm’s law: voltage = impedance × current. (Always 
assuming 𝑉𝑖𝑛̃ = 𝑉0𝑒𝑖𝜔𝑡.) 

Looking at Equation 6 for impedance, we can associate a separate impedance to each 
element. 
Impedance of inductor: 𝑍𝐿 = 𝑖𝐿𝜔 (depends on 𝜔). 
Impedance of resistor: 𝑍𝑅 = 𝑅 (independent of 𝜔).

1Impedance of capacitor: 𝑍𝐶 = (depends on 𝜔).𝑖𝐶𝜔 
Note: 
1. The total complex impedance for a circuit wired in series is just the sum of the individual 
impedances. (Just like resistances in series.) 

2. Complexifying the voltage drops in Equation 1, we see that the voltage drops across each 
element satisfy Ohm’s law. 

̃ ̃ ̃ ̃ ̃ ̃ ̃𝑉𝐿 = 𝐿𝐼′ = 𝐿𝑖𝜔𝐼 = 𝑍𝐿𝐼 (since 𝐼(𝑡) = 𝐺(𝑖𝜔)𝑉0𝑒𝑖𝜔𝑡, so 𝐼′(𝑡) = 𝑖𝜔𝐼(𝑡)) 

𝑉�̃� = 𝑅𝐼 ̃ 

1 1 1̃ ̃ ̃ ̃ ̃ ̃𝑉𝐶 = 𝑄 = 𝐼(𝑡) 𝑑𝑡 = 𝐼 = 𝑍𝐶𝐼 (again, using that 𝐼(𝑡) is a multiple of 𝑒𝑖𝜔𝑡).𝐶 𝐶 
∫ 𝑖𝐶𝜔 

6 Phasors 

Phasor diagrams are a nice graphical way of presenting the voltages and currents associated 
with our LRC circuit. The word phasor essentially means 𝑒𝑖(𝜔𝑡−𝜙). 

6.1 Simple complex arithmetic fact 

You should be clear that in the complex plane multiplication by 𝑖 is the same as rotation 
by 𝜋/2. Likewise, division by 𝑖 is the same as rotation by −𝜋/2. 

Re

Im
ziz

z/i = −iz



6 PHASORS 6 

6.2 Amplitude-phase form 

We start by writing the impedance for the system in Equation 4 in the form 𝑅 + 𝑖𝑆. 
1𝑍(𝑤) = 𝑖𝐿𝜔 + 𝑅 + 𝑖𝐶𝜔 

= 𝑅 + 𝑖(𝐿𝜔 − 𝐶𝜔 
1 ) = 𝑅 + 𝑖𝑆, where 𝑆 = 𝐿𝜔 − 

1 
𝐶𝜔 

. 

In amplitude phase form 𝑍(𝜔) = 
√

𝑅2 + 𝑆2𝑒𝑖𝜙(𝜔), where 𝜙(𝜔) = tan−1(𝑆/𝑅). 
Notice the sign of 𝜙(𝜔) is in the first or fourth quadrant depending on the sign of 𝑆(𝜔) = 
𝐿𝜔 − 1/𝐶𝜔. This implies that 𝜙(𝜔) is between −𝜋/2 and 𝜋/2. 

̃ ̃ ̃Complex Ohm’s law says, 𝑉𝑖𝑛(𝑡) = 𝑍(𝜔)𝐼(𝑡) = |𝑍(𝜔)|𝑒𝑖𝜙(𝜔)𝐼(𝑡). 
Since 𝑉𝑖𝑛̃ (𝑡) = 𝑉0𝑒𝑖𝜔𝑡, we have 

𝑉0𝑒𝑖𝜔𝑡 ̃ ⇒ 𝑉0𝑒𝑖𝜔−𝜙(𝜔) = |𝑍(𝜔)| ̃= |𝑍(𝜔)|𝑒𝑖𝜙(𝜔)𝐼(𝑡) 𝐼(𝑡). 
Taking real parts, we have 𝑉0 cos(𝜔𝑡 − 𝜙(𝜔)) = |𝑍(𝜔)|𝐼(𝑡), which is like Ohm’s law, except 
with a phase shift. 
The term |𝑍(𝜔)| = 

√
𝑆2 + 𝑅2 = √(𝐿𝜔 − 1/𝐶𝜔)2 + 𝑅2 is called the real impedance of the 

system. 
The term 𝑆(𝜔) = 𝐿𝜔−1/(𝐶𝜔) is called the reactance. As always, 𝑅 is called the resistance. 

6.3 Phasor diagrams 

To summarize the complex picture, we have input 𝑉𝑖𝑛̃ (𝑡) = 𝑉0𝑒𝑖𝜔𝑡 and responses 

𝑉𝑖𝑛̃ (𝑡) 𝑉0𝑒𝑖𝜔𝑡−𝜙(𝜔) 1̃ ̃ ̃ ̃ ̃ ̃ ̃𝐼(𝑡) = = , 𝑉𝐿(𝑡) = 𝑖𝐿𝜔𝐼(𝑡), 𝑉𝑅(𝑡) = 𝑅𝐼(𝑡), 𝑉𝐶(𝑡) = 𝐼(𝑡). 𝑍(𝜔) |𝑍(𝜔)| 𝑖𝐶𝜔 

For any 𝑡, we can plot each of these as points in the complex plane. As 𝑡, changes, the 
entire picture rotates at frequency 𝜔. The real values of the voltages are given by the 𝑥 
coordinates (the real parts) of their respective phasors.

̃ ̃ ̃ ̃Note: 𝐼(𝑡) is the phase angle 𝜙(𝜔) behind 𝑉𝑖𝑛(𝑡) (if 𝜙 is negative then 𝐼 is ahead of 𝑉𝑖𝑛). 
Note: Because of the factor of 𝑖, 𝑉�̃� is 𝜋/2 ahead of 𝐼 .̃ Likewise, 𝑉�̃� is 𝜋/2 behind 𝐼 ̃ and
𝑉�̃� is in phase with 𝐼 .̃ 
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Phasor diagram showing phase differences 
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There is a link below to the lovely Series LRC applet. It shows all of this and more! 

6.4 Amplitude response and practical resonance 

Natural frequency: If we set 𝑅 = 0 and 𝑉𝑖𝑛 = 0 in Equation 4, we see that the natural 
frequency of the system is 𝜔0 = 1/

√
𝐿𝐶. 

Practical Resonance: We know that the real gain is 

1 1 
|𝑍(𝜔)| = 

√𝑅2 + (𝐿𝜔 − 1
𝐶𝜔 )

2 
. 

Since the expression under the square root is a sum of squares, it is clearly minimized when 
the expression 𝐿𝜔 − 1/(𝐶𝜔) = 0. That is, when 𝜔 = 1/

√
𝐿𝐶. This shows that 𝜔0 is the 

practical resonant frequency. 
In terms of impedance, we get practical resonance when the reactance 𝑆 = 𝑍𝐿 + 𝑍𝐶 = 
𝐿𝜔 − 1/(𝐶𝜔) = 0. 
In the phasor picture, at practical resonance, 𝑉𝑖𝑛̃ , 𝐼 ̃ and 𝑉�̃� all line up, i.e., the phase lag 
is 0 and 𝑉�̃� = 𝑉𝑖𝑛̃ . 
Practical resonance is a case where the corresponding sinusoidal graphs of the real voltages 
are neat enough to give a nice picture: the graph of 𝑉𝑅 is exactly in phase with 𝑉𝑖𝑛; 𝑉𝐿 

and 𝑉𝐶 have the same magnitude and are 180∘ out of phase; increasing 𝑅 doesn’t change 
𝑉𝑅, but decreases the amplitude of 𝐼 , 𝑉𝐿 and 𝑉𝐶 . 
The applet ’Series LRC Circuit’ (link is given below) shows all this beautifully. 

7 Impedance in parallel 

In this section we’ll show that complex impedances in parallel combine like resistors in 
parallel. That is, if impedances 𝑍1 and 𝑍2 are in parallel then the total impedance of the 

pair, call it 𝑍, satisfies 
1 = 

1 + 
1 . We’ll use this in the form 𝑍 𝑍1 𝑍2 

1𝑍 = .1/𝑍1 + 1/𝑍2 

Ṽin Z1 Z2

Ĩ Ĩ2

Ĩ1

Circuit with impedances in parallel 
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To see this, we use the complex Ohm’s law, KVL and Kirchhoff’s current law (KCL). 
Referring to the figure above, KCL implies 𝐼 ̃ = 𝐼1̃ +𝐼2̃ and KVL implies 𝑉𝑖𝑛̃ = 𝑍1𝐼1̃ = 𝑍2𝐼2̃ .

̃ ̃̃ 𝑉𝑖𝑛 ̃ 𝑉𝑖𝑛 Thus, 𝐼1 = and 𝐼2 = . So,𝑍1 𝑍2 

̃ ̃ 1𝐼 ̃ = 𝐼1̃ + 𝐼2̃ = 𝑉𝑖𝑛 + 𝑉𝑖𝑛 = 𝑉𝑖𝑛̃ ( 1 + 
1 ) ⇒ 𝑉𝑖𝑛̃ = 𝐼 ̃ = 𝑍𝐼.̃ ■𝑍1 𝑍2 𝑍1 𝑍2 1/𝑍1 + 1/𝑍2 

8 Series LRS applet 

A nice applet showing all of this is at 
https://mathlets.org/mathlets/series-rlc-circuit/. 
Suggested applet exercise Set it to show you all four voltages and the current 𝐼 . Set
𝐿 = 500 mH, 𝐶 = 100 𝜇𝐹 , 𝑅 = 250 ohms. 
Compute the resonant frequency of the system. 
Move 𝜔 to the resonant frequency, watch the phasors and the sinusoidal plots as you do 
this. 
With 𝜔 set at 𝜔0 watch the amplitudes of the 3 output voltages and the output current as
𝑅 increases. Explain everything you see in terms of the complex Ohm’s laws. (And the 
exponential response formula solution for 𝐼 .)̃ 

https://mathlets.org/mathlets/series-rlc-circuit/
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