Topic 1: Intro to differential equations Jeremy Orloff

1 Agenda

- Welcome!
- Administrative stuff
- DEs are rate equations
- DEs model physical systems
- DEs are slope equations
- Separable equations
- Problems

2 Administrative stuff

Teachers: Jerry Orloff, Jon Bloom

You should have gotten links to our websites.

- Canvas has all these links
- Look at our main website
 - Read syllabus for dates
 - Read "Grading and class policies"
 - Pset 1 is posted
 - Pset checker is on MITx

Grade: 40% psets, 55% quizzes, 5% participation

Key: Do the reading before class. We'll expect this, but we won't expect full understanding.

Class = lecture + problem solving.

All slides and problems posted before class.

Attend office hours!

3 Derivatives

 $\frac{dx}{dt}$ is the rate x changes with respect to t. $\frac{dy}{dx}$ is the rate y changes with respect to x, i.e., the slope of the graph.

4 Differential equations (DEs)

- Derivative
- Equal sign

4.1 Examples

1.
$$\frac{dx}{dt} = ax$$
 (order 1).
2. $\frac{d^2x}{dt^2} + ax = 0$ (order 2).
3. $\left(\frac{dx}{dt}\right)^3 + \frac{d^2x}{dt^2} = x^2\sin(6t)$ (order 2).
4. $y''' + 3y'' + 4y' + 5y = \sin(6t)$ (order 3).

In (1), x depends on t: t is the independent variable, x is the unknown function.

** Solving the DE means finding the unknown function x(t) that satisfies the equation.

In (4), by contex, y depends on t, $y' = \frac{dy}{dt}$.

4.2 Some well known DEs

1. Newton's law of cooling.

T(t) = temperature of a body at time t. E = temperature of its environment

Model:
$$\frac{dT}{dt} = -k(T-E),$$

k = rate constant, dimension 1/time.

2. Gravity near the Earth's surface.

x(t) = height of a mass above the ground.

Model:
$$\frac{d^2x}{dt^2} = -g$$
, $g = -9.8 \text{ m/sec}^2$

3. Hooke's law.

Mass m on a spring with spring constant k. x(t) = displacement of <math>m from equilibrium.

Model:
$$m\frac{d^2x}{dt^2} = -kx.$$

5 Separable equations

Example 1. Solve $\frac{dy}{dx} = x^2(y-2)$. **Solution:** Independent variable = x, dependent variable y = unknown function. Steps

1. Separate the variables: $\frac{dy}{y-2} = x^2 dx$. 2. Integrate: $\ln |y-2| = \frac{x^3}{3} + C$. (Don't forget the *C*.) 3. Algebra: $|y-2| = e^c e^{x^3/3}$. 4. So, if y < 2, $y = -e^c e^{x^3/3} + 2$, (note: $-e^c < 0$)

if
$$y < 2$$
, $y = -e^c e^{x^2/3} + 2$, (note: $-e^c < 0$)
if $y > 2$, $y = e^c e^{x^3/3} + 2$, (note: $e^c > 0$)
if $y = 2$, $y = 2$, lost solution

It's easy to verify the lost solution is a solution. Lost because dividing by y-2 is dividing by 0,

Can summarize the solution: $y(x) = \tilde{C}e^{x^3/3}$, where \tilde{C} can take any value.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.