
Day 10, F 2/16/2024 

Topic 5: Homogeneous, linear, constant coefficient DEs (day 2 of 2) 
Jeremy Orloff 

1 Agenda 

• All about 𝑒𝑟𝑡 

• Quick review 

• Damped harmonic oscillators 

• Decay rate of exponentials 

• Pole diagrams 

• Existence and uniqueness theorem (if time - it’s in the reading) 

2 Review 

Solve 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 (𝑚, 𝑏, 𝑘 positive constants) 

Solution: Characteristic equation: 𝑚𝑟2 + 𝑏𝑟 + 𝑘 = 0. 
−𝑏 ± 

√
𝑏2 − 4𝑚𝑘 Characteristic roots: 𝑟 = .2𝑚 

Basic solutions depend on the type of roots. For example: 

𝑟 = −2, −7 ⟶ 𝑥1 = 𝑒−2𝑡, 𝑥2 = 𝑒−7𝑡 

𝑟 = −2 ± 7𝑖 ⟶ 𝑥1 = 𝑒−2𝑡 cos(7𝑡), 𝑥2 = 𝑒−2𝑡 sin(7𝑡) 

𝑟 = −2, −2 ⟶ 𝑥1 = 𝑒−2𝑡, 𝑥2 = 𝑡𝑒−2𝑡 

In all cases, the general solution is 𝑥(𝑡) = 𝑐1𝑥1 + 𝑐2𝑥2, (𝑐1, 𝑐2 constants). 

2.1 Polar form of sinusoids 

𝑐1 cos(𝜔𝑡) + 𝑐2 sin(𝜔𝑡) = 𝐴 cos(𝜔𝑡 − 𝜙) 

Amplitude Phase lag 

⎵⎵⎵⎵⎵⎵⎵⎵⎵ ⎵⎵⎵⎵⎵ 
rectangular form Polar form or amplitude-phase form 

Relationship betweem 𝑐1, 𝑐2, 𝐴, 𝜙: 

The figure shows 𝑐1 = cos 𝜙, 𝑐2 = sin 𝜙. 
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To see the two forms are equal use the cosine addition formula: 

𝑐1 cos(𝜔𝑡) + 𝑐2 sin(𝜔𝑡) = 𝐴 cos(𝜙) cos(𝜔𝑡) + 𝐴 sin(𝜙) sin(𝜙) = 𝐴 cos(𝜔𝑡 − 𝜙). 

1 



3 DAMPED HARMONIC OSCILLATOR 2 

3 Damped harmonic oscillator 

Here is one version: The ends of the spring and damper are fixed and there is no input 
driving the mass. 

m

x(t)

k

damping coefficient b

• 𝑘 = spring constant 

• 𝑏 = linear damping constant 

• 𝑚 = mass 

• 𝑥 = displacement from equilibrium 

Model: 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 

Natural frequency (spring/mass): 𝜔0 = √𝑘/𝑚, i.e., the frequency of the spring-mass 
with no damping: 𝑚𝑥″ + 𝑘𝑥 = 0. 

3.1 Solving 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 

−𝑏 ± 
√

𝑏2 − 4𝑚𝑘 Roots: 𝑟 = .2𝑚 
𝑟 real: overdamped 

- ‘𝑏 big’, i.e., 𝑏2 − 4𝑚𝑘 > 0 

- Roots are real and negative: −𝑟2, −𝑟2 

- 𝑥(𝑡) = 𝑐1𝑒−𝑟1𝑡 +𝑐2𝑒−𝑟2𝑡, – no oscillation, decays to 𝑥 = 0, i.e., decays to equilibrium 

𝑟 complex: underdamped 

- ‘𝑏 small’, i.e., 𝑏2 − 4𝑚𝑘 < 0 

− 
𝑏 √|𝑏2 − 4𝑚𝑘|- Roots are complex: 2𝑚 

± 𝛽𝑖, 𝛽 = 2𝑚 
- Real parts are negative 

- 𝑥(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 cos(𝛽𝑡) + 𝑐2𝑒−𝑏𝑡/2𝑚 sin(𝛽𝑡) – Oscillates, decays to 𝑥 = 0 (equilib-
rium) 

𝑟 repeated: critically damped 

- ‘𝑏 just right’, i.e., 𝑏2 − 4𝑚𝑘 < 0 

− 
𝑏 - Roots are real and negative: 2𝑚, − 

𝑏 
2𝑚 

- 𝑥(𝑡) = 𝑐1𝑒−𝑏𝑡/2𝑚 + 𝑐2𝑡𝑒−𝑏𝑡/2𝑚, – no oscillation, decays to 𝑥 = 0 (equilibrium) 

If initial velocity 𝑥′(0) = 0 (at rest) 

- Overdamped: will not cross equilibrium for 𝑡 > 0, i.e., 𝑥(𝑡) > 0. 
- Critically damped: same 



4 EXPONENTIAL DECAY RATE 3 

- Underdamped: crosses equilibrium an infinite number of times 

t

x

overdamped

underdamped

critically damped

undamped

Damped harmonic oscillators starting from rest 

4 Exponential decay rate 

We know 𝑒−𝑡 ⟶ 0 as 𝑡 ⟶ 0. 

𝑒−3𝑡 

𝑒−3𝑡 cos 𝑡 
𝑡𝑒−3𝑡 

𝑒−3𝑡 + 𝑒−2𝑡 

𝑐1𝑒−2𝑡 + 𝑐2𝑒−3𝑡 + 𝑐4𝑒−4𝑡 

decays to 0 like 𝑒−3𝑡 

decays to 0 like 𝑒−3𝑡 

decays to 0 like 𝑒−3𝑡 

decays to 0 like 𝑒−2𝑡 

decays to 0 like 𝑒−2𝑡 

5 Pole diagrams for linear, constant coefficient systems 

For the system 𝑃 (𝐷)𝑥 = 0 we can draw a pole diagram. This tells at a glance if solutions 
oscillate, if solutions go to 0 as 𝑡 gets big and the decay rate of solutions. 
Rules: 

• In complex plane 

• Put an × at each characteristic root 

• The roots are also known as poles 

Example 1. Suppose the roots are −2 ± 3𝑖, −4. Draw the pole diagram. Do solutions 
oscillate? Do they go to 0? How fast do the solutions decay? 

Solution: We put an × at each of the roots (poles). 

Re

Im

−2−4 2 4

1

−3

3
Complex roots ⟶ the general solution is oscillatory. 

All real parts < 0 (all poles in left half-plane) ⟶ all solu-
tions go to 0. 

Decay determined by the root farthest to the right, i.e., so-
lutions decay like 𝑒−2𝑡. 
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6 Existence and uniqueness 

(Will do in class only if there is time.) 

Why are 2 parameters enough to get all the solutions to a second-order DE? 

Existence and uniqueness theorem: The DE with initial conditions: 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0, 𝑥(𝑡0) = 𝑏0, 𝑥′(𝑡0) = 𝑏1 

has a unique solution. 
Proof. This makes physical sense. The mathematical analysis is challenging. 
Important implication: What we called our general solution does, in fact, give us every 
possible solution. 
Example 2. Consider 𝑥″ + 8𝑥′ + 7𝑥 = 0. Show that 𝑥(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡 gives every 
possible solution. 
Solution: The characteristic roots are −1, −7, so we know that 𝑥(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡 

are solutions. To show they give every solution, we have to show they cover every initial 
condtion. 
So suppose we have initial conditions 𝑥(𝑡0) = 𝑏0, 𝑥′(𝑡0) = 𝑏1, then we have to find 𝑐1 and
𝑐2 to match these conditions. That is, we have to solve the algebraic system of equations 

𝑥(𝑡0) = 𝑐1𝑒−𝑡0 + 𝑐2𝑒−7𝑡0 = 𝑏0 

𝑥′(𝑡0) = −𝑐1𝑒−𝑡0 − 7𝑐2𝑒−7𝑡0 = 𝑏1 

𝑒−7𝑡0
The coefficient matrix [−𝑒

𝑒−𝑡
−𝑡

0

0 −7𝑒−7𝑡0
] is nonsingular (has an inverse). So there is always 

a solution to the equations. (In fact, exactly one solution.) 

More generally, for 𝑛th order DEs, we need 𝑛 initial conditions. That is, the DE 

𝑎𝑛𝑥(𝑛) + 𝑎𝑛−1𝑥(𝑛−1) + … + 𝑎1𝑥′ + 𝑎0𝑥 = 0 

with initial conditions 

𝑥(𝑡0) = 𝑏0, 𝑥′(𝑡0) = 𝑏1, … , 𝑥(𝑛)(𝑡0) = 𝑏𝑛. 

has a unique solution. 
This implies we need exactly 𝑛 coefficients 𝑐1, … , 𝑐𝑛 in the general solution. 
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