Day 10, F 2/16/2024

Topic 5: Homogeneous, linear, constant coefficient DEs (day 2 of 2)
Jeremy Orloff

1 Agenda

o All about e

e Quick review

e Damped harmonic oscillators
e Decay rate of exponentials

e Pole diagrams

 Existence and uniqueness theorem (if time - it’s in the reading)

2 Review

Solve ma” + bz’ + kx =0 (m, b, k positive constants)

Solution: Characteristic equation: mr? + br + k = 0.

—b+ Vb% —4Amk

2m
Basic solutions depend on the type of roots. For example:

Characteristic roots: r =

=-2,-7T —z=c? py=c

- Tt
r=-2+47 — x; =e *tcos(Tt), zo = et sin(Tt)
r

=-2 -2 — gz =2 py=te?

In all cases, the general solution is z(t) = ¢;x; + cyzy, (cq, ¢y constants).

2.1 Polar form of sinusoids

Amplitude Phase lag
v V4

¢y cos(wt) + ¢4 sin(wt) = A cos(wt — @)
. .
rectangular form Polar form or amplitude-phase form
Relationship betweem c;, ¢y, A, ¢: A ‘.
2
The figure shows ¢; = cos¢, ¢y = sin¢. =

To see the two forms are equal use the cosine addition formula:

¢y cos(wt) + ¢y sin(wt) = A cos(¢) cos(wt) + Asin(¢) sin(¢p) = A cos(wt — ¢).



3 DAMPED HARMONIC OSCILLATOR 2

3 Damped harmonic oscillator

Here is one version: The ends of the spring and damper are fixed and there is no input

—E=_1

(1)

driving the mass.

e k = spring constant
e b = linear damping constant
e m = mass

o x = displacement from equilibrium

Model: ma” +bx’ +kzx =0

Natural frequency (spring/mass): w, = \/k/m, i.e., the frequency of the spring-mass
with no damping: ma” + kxz = 0.

3.1 Solving mx” 4+ bx’ +kx =0
—b+ Vb2 —4mk

2m
r real: overdamped

- ‘b big’, i.e., b>—4mk >0

- Roots are real and negative: —ry, —1y

Roots: r =

- 2(t) = cpe "t 4 e ™t — o oscillation, decays to x = 0, i.e., decays to equilibrium
r complex: underdamped
- ‘bsmall’, ie., b?2—4mk<0
|b2 — dmk]|
2m

b
Roots are complex: —— + i, =
2m

Real parts are negative

- z(t) = ¢ e 2™ cos(Bt) + cpe P2 sin(Bt) —  Oscillates, decays to 2 = 0 (equilib-
rium)

r repeated: critically damped

- ‘b just right’, i.e., b>—4mk <0

b b
- Roots are real and negative: ———, ——
2m’ 2m
- x(t) = ¢y e P2 eyte /2™~ no oscillation, decays to 2 = 0 (equilibrium)

If initial velocity z’(0) = 0 (at rest)
- Overdamped: will not cross equilibrium for ¢t > 0, i.e., z(t) > 0.

- Critically damped: same



4 EXPONENTIAL DECAY RATE 3

- Underdamped: crosses equilibrium an infinite number of times

undamped

Damped harmonic oscillators starting from rest

4 Exponential decay rate

We know et — 0 as t — 0.

—3t t

e decays to 0 like 3

e 3tcost decays to 0 like e3¢
te 3t decays to 0 like e3¢

e 3t 42t decays to 0 like e =2

4t t

Cle—2t + 02@—3t +c e decays to 0 like e~

5 Pole diagrams for linear, constant coefficient systems

For the system P(D)z = 0 we can draw a pole diagram. This tells at a glance if solutions
oscillate, if solutions go to 0 as t gets big and the decay rate of solutions.

Rules:
e In complex plane
e Put an x at each characteristic root
e The roots are also known as poles

Example 1. Suppose the roots are —2 4+ 3i, —4. Draw the pole diagram. Do solutions
oscillate? Do they go to 07 How fast do the solutions decay?

Solution: We put an x at each of the roots (poles).

Im
x 1q Complex roots — the general solution is oscillatory.
All real parts < 0 (all poles in left half-plane) — all solu-
T tions go to 0.
/R s iR
Decay determined by the root farthest to the right, i.e., so-
lutions decay like e 2.
x -3
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6 Existence and uniqueness

(Will do in class only if there is time.)
Why are 2 parameters enough to get all the solutions to a second-order DE?

Existence and uniqueness theorem: The DE with initial conditions:
ma” + bz’ +kxr =0, x(ty) =by, z'(ty) = by

has a unique solution.
Proof. This makes physical sense. The mathematical analysis is challenging.

Important implication: What we called our general solution does, in fact, give us every
possible solution.

Example 2. Consider 2”7 + 82" 4+ 72 = 0. Show that z(t) = c;e”! + coe™ "t gives every
possible solution.

Solution: The characteristic roots are —1, —7, so we know that z(t) = cje™t + cye™ "

are solutions. To show they give every solution, we have to show they cover every initial
condtion.

So suppose we have initial conditions xz(t,) = by, z’(t,) = b;, then we have to find ¢; and
¢o to match these conditions. That is, we have to solve the algebraic system of equations
x(ty) = cie o + cpe T = b,

7' (ty) = —cre fo — Tege "o = by

—t, e—Tto

The coefficient matrix [ ] is nonsingular (has an inverse). So there is always

—et —Te Tt

a solution to the equations. (In fact, exactly one solution.)

More generally, for n'"" order DEs, we need n initial conditions. That is, the DE
a,z'™ +a, 2™V 4.+ a2’ +agr =0

with initial conditions

x(ty) = by, x/(to) = by, - ﬂf(n)(to) =b

-
has a unique solution.

This implies we need exactly n coefficients ¢y, ..., ¢, in the general solution.
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