Day 10, F 2/16/2024

Topic 5: Homogeneous, linear, constant coefficient DEs (day 2 of 2) Jeremy Orloff

1 Agenda

- All about e^{rt}
- Quick review
- Damped harmonic oscillators
- Decay rate of exponentials
- Pole diagrams
- Existence and uniqueness theorem (if time it's in the reading)

2 Review

Solve mx'' + bx' + kx = 0 (m, b, k positive constants)

Solution: Characteristic equation: $mr^2 + br + k = 0$.

Characteristic roots: $r = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m}$.

Basic solutions depend on the type of roots. For example:

$$\begin{array}{ll} r=-2,\,-7 & \longrightarrow x_1=e^{-2t},\, x_2=e^{-7t} \\ r=-2\pm 7i & \longrightarrow x_1=e^{-2t}\cos(7t),\, x_2=e^{-2t}\sin(7t) \\ r=-2,\,-2 & \longrightarrow x_1=e^{-2t},\, x_2=te^{-2t} \end{array}$$

In all cases, the general solution is $x(t) = c_1 x_1 + c_2 x_2$, $(c_1, c_2 \text{ constants})$.

2.1 Polar form of sinusoids

$$\underbrace{c_1 \cos(\omega t) + c_2 \sin(\omega t)}_{\text{rectangular form}} = \underbrace{A \cos(\omega t - \phi)}_{\text{Polar form or amplitude-phase form}}^{\checkmark}$$

Relationship betweem $c_1,\,c_2,\,A,\,\phi{:}$

The figure shows $c_1 = \cos \phi$, $c_2 = \sin \phi$.

$$\phi$$

To see the two forms are equal use the cosine addition formula:

$$c_1 \cos(\omega t) + c_2 \sin(\omega t) = A \cos(\phi) \cos(\omega t) + A \sin(\phi) \sin(\phi) = A \cos(\omega t - \phi).$$

3 Damped harmonic oscillator

Here is one version: The ends of the spring and damper are fixed and there is no input driving the mass.

- k = spring constant
- b = linear damping constant
- m = mass
- x = displacement from equilibrium

Model: mx'' + bx' + kx = 0

Natural frequency (spring/mass): $\omega_0 = \sqrt{k/m}$, i.e., the frequency of the spring-mass with no damping: mx'' + kx = 0.

3.1 Solving mx'' + bx' + kx = 0

Roots:
$$r = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m}$$
.

r real: overdamped

- 'b big', i.e., $b^2 4mk > 0$
- Roots are real and negative: $-r_2, -r_2$

- $x(t) = c_1 e^{-r_1 t} + c_2 e^{-r^2 t}$, – no oscillation, decays to x = 0, i.e., decays to equilibrium complex: underdamped

r complex: underdamped

- 'b small', i.e., $b^2 - 4mk < 0$

- Roots are complex:
$$-\frac{b}{2m} \pm \beta i, \ \beta = \frac{\sqrt{b^2 - 4mk}}{2m}$$

- Real parts are negative
- $x(t)=c_1e^{-bt/2m}\cos(\beta t)+c_2e^{-bt/2m}\sin(\beta t)~-$ Oscillates, decays to x=0 (equilibrium)

r repeated: critically damped

- 'b just right', i.e., $b^2 4mk < 0$
- Roots are real and negative: $-\frac{b}{2m}, -\frac{b}{2m}$ - $x(t) = c_1 e^{-bt/2m} + c_2 t e^{-bt/2m}$, - no oscillation, decays to x = 0 (equilibrium)

If initial velocity x'(0) = 0 (at rest)

- Overdamped: will not cross equilibrium for t > 0, i.e., x(t) > 0.
- Critically damped: same

Damped harmonic oscillators starting from rest

4 Exponential decay rate

We know $e^{-t} \longrightarrow 0$ as $t \longrightarrow 0$.

e^{-3t}	decays to 0 like e^{-3t}
$e^{-3t}\cos t$	decays to 0 like e^{-3t}
te^{-3t}	decays to 0 like e^{-3t}
$e^{-3t} + e^{-2t}$	decays to 0 like e^{-2t}
$c_1 e^{-2t} + c_2 e^{-3t} + c_4 e^{-4t}$	decays to 0 like e^{-2t}

5 Pole diagrams for linear, constant coefficient systems

For the system P(D)x = 0 we can draw a pole diagram. This tells at a glance if solutions oscillate, if solutions go to 0 as t gets big and the decay rate of solutions.

Rules:

- In complex plane
- Put an × at each characteristic root
- The roots are also known as poles

Example 1. Suppose the roots are $-2 \pm 3i$, -4. Draw the pole diagram. Do solutions oscillate? Do they go to 0? How fast do the solutions decay?

Solution: We put an \times at each of the roots (poles).

Complex roots \rightarrow the general solution is oscillatory.

All real parts < 0 (all poles in left half-plane) \rightarrow all solutions go to 0.

Decay determined by the root farthest to the right, i.e., solutions decay like e^{-2t} .

6 Existence and uniqueness

(Will do in class only if there is time.)

Why are 2 parameters enough to get all the solutions to a second-order DE? Existence and uniqueness theorem: The DE with initial conditions:

$$mx'' + bx' + kx = 0$$
, $x(t_0) = b_0$, $x'(t_0) = b_1$

has a unique solution.

Proof. This makes physical sense. The mathematical analysis is challenging.

Important implication: What we called our general solution does, in fact, give us every possible solution.

Example 2. Consider x'' + 8x' + 7x = 0. Show that $x(t) = c_1 e^{-t} + c_2 e^{-7t}$ gives every possible solution.

Solution: The characteristic roots are -1, -7, so we know that $x(t) = c_1 e^{-t} + c_2 e^{-7t}$ are solutions. To show they give every solution, we have to show they cover every initial condition.

So suppose we have initial conditions $x(t_0) = b_0$, $x'(t_0) = b_1$, then we have to find c_1 and c_2 to match these conditions. That is, we have to solve the algebraic system of equations

$$\begin{aligned} x(t_0) &= c_1 e^{-t_0} + c_2 e^{-7t_0} = b_0 \\ x'(t_0) &= -c_1 e^{-t_0} - 7c_2 e^{-7t_0} = b_0 \end{aligned}$$

The coefficient matrix $\begin{bmatrix} e^{-t_0} & e^{-7t_0} \\ -e^{-t_0} & -7e^{-7t_0} \end{bmatrix}$ is nonsingular (has an inverse). So there is always a solution to the equations. (In fact, exactly one solution.)

More generally, for n^{th} order DEs, we need n initial conditions. That is, the DE

$$a_n x^{(n)} + a_{n-1} x^{(n-1)} + \ldots + a_1 x' + a_0 x = 0$$

with initial conditions

$$x(t_0)=b_0,\,x'(t_0)=b_1,\,\ldots,\,x^{(n)}(t_0)=b_n.$$

has a unique solution.

This implies we need exactly n coefficients c_1, \ldots, c_n in the general solution.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.