Solutions Day 13, R 2/22/2024

Topic 6: Operators, inhomogeneous DEs, ERF, SRF Jeremy Orloff

Problem 1. Let $P(r) = r^2 + 8r + 7$. (a) Compute $P(D)t^3$, i.e., "P(D) applied to t^3 ". Solution: $P(D) = D^2 + 8D + 7I$. So, $P(D)x = x'' + 8x' + 7x \implies P(D)t^3 = 6t + 24t^2 + 7t^3$. (b) Compute $P(D)e^{rt}$. Solution: $P(D)e^{rt} = r^2e^{rt} + 8re^{rt} + 7e^{rt} = (r^2 + 8r + 7)e^{rt} = P(r)e^{rt}$. (c) Write P(D)x = 0 out the long way. What is the characteristic equation? Solution: $P(D)x = 0 \implies x'' + 8x' + 7x = 0$. Characteristic equation: $r^2 + 8r + 7 = 0$ or P(r) = 0.

Problem 2.

(a) Show that $D^2 + 5D = \frac{d^2}{dt^2} + 5\frac{d}{dt}$ is a linear operator.

Solution: We need to show that $(D^2+5D)(c_1x_1+c_2x_2) = c_1(D^2+5D)x_1+c_2(D^2+5D)x_2$, where c_1 , c_2 are scalars. This is just a bit of algebra:

$$\begin{split} (D^2+5D)(c_1x_1+c_2x_2) &= (c_1x_1+c_2x_2)''+5(c_1x_1+c_2x_2)'\\ &= c_1(x_1''+5x_1')+c_2(x_2''+5x_2')\\ &= c_1(D^2+5D)x_1+c_2(D^2+5D)x_2 \end{split} \blacksquare$$

(b) Show that T, defined by $Tf = f^2$ is not linear.

Solution: This is like Part (a) except we show that equality doesn't hold.

$$T(x_1 + x_2) = (x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2 = Tx_1 + Tx_2 + 2x_1x_2 \neq Tx_1 + Tx_2.$$

Since $T(x_1 + x_2) \neq Tx_1 + Tx_2$, T is not a linear operator.

Problem 3. Solve $x'' + 8x' + 7x = e^{2t}$ by guessing a solution of the form $x = ce^{2t}$. Solution: We try $x = ce^{2t}$, i.e., plug this into the DE.

$$x'' + 8x' + 7x = e^{2t} \quad \Rightarrow \ 4ce^{2t} + 16ce^{2t} + 7ce^{2t} = e^{2t} \quad \Rightarrow \ c(4 + 16 + 7)e^{2t} = e^{2t} \quad \Rightarrow \ c = \frac{1}{27} + \frac{1$$

Thus, $x(t) = \frac{1}{27}e^{2t}$ is a solution.

Problem 4.

(a) Use complex replacement to compute $D^3(e^t \cos t)$.

Solution: Let $x = D^3(e^t \cos t)$. Complex replacement says to replace $e^t \cos t$ by $e^t e^{it} = e^{(1+i)t}$. (Careful explanation of this below.)

Then, if $z = D^3(e^{(1+i)t})$, we have x = Re(z). Computing:

$$z = D^3(e^{(1+i)t}) = (1+i)^3 e^{(1+i)t}$$

Since $1 + i = \sqrt{2}e^{i\pi/4}$, $(1+i)^3 = 2^{3/2}e^{i3\pi/4}$. We now have,

$$z = 2^{3/2} e^{i3\pi/4} e^{(1+i)t} = 2^{3/2} e^t e^{i(t+3\pi/4)}.$$

Taking the real part

$$x = \operatorname{Re}(z) = \operatorname{Re}\left(2^{3/2}e^{t}e^{i(t+3\pi/4)}\right) = \operatorname{Re}\left(2^{3/2}e^{t}\left[\cos\left(t+\frac{3\pi}{4}\right)+i\sin\left(t+\frac{3\pi}{4}\right)\right]\right) = \boxed{2^{3/2}e^{t}\cos\left(t+\frac{3\pi}{4}\right)}$$

Careful justification of complex replacement:

We have $x = D^3(e^t \cos t)$. Let $y = D^3(e^t \sin t)$. and let $z = x + iy = D^3(e^t \cos t) + iD^3(e^t \sin t)$ $= D^3(e^t \cos t + ie^t \sin t)$ (linearity of D^3) $= D^3(e^t e^{it})$ (Euler's formula) $= D^3(e^{(1+i)t})$

So, $z = D^3(e^{(1+i)t})$, and, by definition of $z, x = \operatorname{Re}(z)$.

(b) Make use of your work in Part (a) to compute $D^3(e^t \sin t)$.

Solution: The complexification in Part (a), showed $D^3(e^t \sin t) = \text{Im}(z) = 2^{3/2}e^t \sin\left(t + \frac{3\pi}{4}\right)$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.