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1 Agenda 

• Time invariance 

• Stability 
–mathematical 
–physical 

• Routh-Hurwitz criteria for stability 

• Maxwell and exploding steam engines 

2 Time invariance 

Time invariance: The same initial state and input produces the same output, no matter 
what time the system starts. 
Constant coefficient systems are time invariant. 
Example 1. Consider the two systems (same input and IC, but starting at different 
times) 

𝑥′
1 + 2𝑥1 = 1, 𝑥(0) = 2 ⟶ 𝑥1(𝑡) = 

1
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+ 2
3𝑒−2𝑡 

1𝑥′
2 + 2𝑥2 = 1, 𝑥(1) = 2 ⟶ 𝑥2(𝑡) = 2 

+ 
3
2𝑒−2(𝑡−1). 

So, 𝑥2(𝑡) = 𝑥1(𝑡 − 1), i.e., the graph of 𝑥2 is a shifted copy of the graph of 𝑥1. 
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Example 2. If 
𝑥″ + 8𝑥′ + 7𝑥 = 𝑓(𝑡), 𝑥(0) = 1, 𝑥′(0) = 2, 

then 𝑦(𝑡) = 𝑥(𝑡 − 𝑡0) satisfies 

𝑦″ + 8𝑦′ + 7𝑦 = 𝑓(𝑡 − 𝑡0), 𝑦(𝑡0) = 1, 𝑦′(𝑡0) = 2. 
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3 STABILITY 2 

(Same input and IC, both shifted in time.) 
This is easy to check: 𝑦″(𝑡)+8𝑦′(𝑡)+7𝑦(𝑡) = 𝑥″(𝑡−𝑡0)+8𝑥′(𝑡−𝑡0)+7𝑥(𝑡−𝑡0) = 𝑓(𝑡−𝑡0). 

t
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x(t) y(t) = x(t− t0)

3 Stability 

3.1 Mathematical stability 

By mathematic stability we mean: Initial conditions don’t affect long-term behavior. 
For constant coefficient systems 𝑃 (𝐷)𝑥 = 𝑓 : 
stability = all homogeneous solutions decay to 0 as 𝑡 increases 

= all characteristic roots have negative real part 
= pole diagram has all roots in the left half-plane 

Example 3. Consider 𝑥″ + 8𝑥′ + 7𝑥 = cos(2𝑡), 𝑥(0) = 𝑏0, 𝑥′(0) = 𝑏1. Show this satisfies 
each of the descriptions of stability. 
Solution: The characteristic roots are −1, −7. 
• All homogoneous solutions decay to 0: The general homogeneous solution is 𝑥ℎ(𝑡) = 
𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡. Because of the negative exponents, these all decay to 0 as 𝑡 gets large. 
• All roots have negative real part: This is clear. 
• Pole diagram has all roots in the left half-plane: 
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• Long-term behavior is not affected by the initial conditions: 
This takes some algebra. The general solution to the DE is 

𝑥(𝑡) = 
cos(2𝑡 − 𝜙) + 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡.√
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So the initial conditions give 

𝑥(0) = 
cos√(−𝜙)

265 
+ 𝑐1 + 𝑐2 = 𝑏0 

𝑥′(0) = 
−2√sin 

265
(−𝜙) − 𝑐1 − 7𝑐2 = 𝑏1 



4 ROUTH-HURWITZ CRITERIA FOR STABILITY IN 𝑃 (𝐷)𝑋 = 𝐹 3 

We can solve these equations for 𝑐1, 𝑐2. Whatever the values of 𝑐1 and 𝑐2, we see that 𝑥(𝑡) 

goes asymptotically to 
cos(2𝑡 − 𝜙) . That is, the initial conditions 𝑥(0) = 𝑏0, 𝑥′(0) = 𝑏1 do√
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not affect the long-term behavior of the system. 
Important note: Stability is about the system, not the input. 

3.2 Physical stability 

A system with a single equilibrium is called stable if, when there is no external input, the 
system always returns to that equilibrium. 
Example 4. Damped harmonic oscillators are stable 
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Example 5. A ball in a cup will settle to the botton, So this is a stable equilibrium. A 
ball on top of a hill will roll away from the unstable equilbrium at the top. 

Stable and unstable equilibria 

3.3 Connection between mathematical and physical stability 

𝑃 (𝐷)𝑥 = 𝑓 is mathematically stable means 𝑥ℎ(𝑡) ⟶ 0 as 𝑡 ⟶ 0. 
Physical stablity means the unforced system 𝑃 (𝐷)𝑥 = 0 always returns to the equilibrium 
at 𝑥 = 0, i.e., 𝑥ℎ(𝑡) goes to 0. 

4 Routh-Hurwitz criteria for stability in 𝑃 (𝐷)𝑥 = 𝑓 

The key point is that we can determine stability directly from the coefficients of 𝑃 (𝐷) 
without having to compute roots. 
1st-order 𝑥′ + 𝑘𝑥 = 𝑓(𝑡) stable ⟷ 𝑘 > 0 
2nd-order 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑓(𝑡), 𝑚 > 0 stable ⟷ 𝑏, 𝑘 > 0 
3rd-order 𝑥‴ + 𝑎𝑥″ + 𝑏𝑥′ + 𝑐𝑥 = 𝑓(𝑡) stable ⟷ 𝑎, 𝑏, 𝑐 > 0 and 𝑎𝑏 > 𝑐 

You should know 1st and 2nd-order. You should know there is a condition for 3rd-order and 
higher, but we won’t expect you to memorize it. 



5 MAXWELL AND EXPLODING STEAM ENGINES* 4 

5 Maxwell and exploding steam engines* 

In his paper On Governors**, J. C. Maxwell explored the dynamics and stability of gover-
nors. This was a foundational paper in control theory, which introduced the notion that all 
the roots of the characteristic equation having negative real part was necessary for stability. 

Centrifugal governor

Coefficient of friction a
l
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θ

Linkage from
drive shaft
to governor

Steam Engine
To load

Drive shaft

Steam BoilerThrottle valve

If the drive shaft speeds up, the governor turns faster, so the balls rise. This closes the 
throttle valve, which limits the steam to the engine, so it slows down. 
There is an equilibrium position 𝜃0 for the angle 𝜃. The linearization*** of the nonlinear 
model for 𝜃 near the equilbrium is 

𝜃‴ + 𝑚
𝑎 𝜃″ + 𝑏𝜃′ + 𝑐𝜃 = 0 (Maxwell) 

Here, 𝑎 is the coefficient of friction in the governor’s bearings and 𝑏, 𝑐 are physical constants 
determined by the configuration and load. 

𝑎 By Routh-Hurwitz (discovered by Maxwell), this is unstable if ⋅ 𝑏 < 𝑐.𝑚 
𝑎 If the machinists make the bearings nearly frictionless, i.e., make 𝑎 small, then ⋅ 𝑏 < 𝑐 𝑚 

and the system is unstable. The governor in the unstable system is too reactive and can 
cause the speed of the engine to oscillate with increasing amplitude, leading to catastrophic 
failure. 
*Much of this section is taken from an unpublished writeup by Nirav Shah, called “Deriva-
tion of the Maxwell/Vyshnegradskii Stability Criterion for the Watts Centrifugal Governor” 

**Maxwell J.C., “On Governors”, Proc. of the Royal Society, vol 16, Mar. 1868 

***We’ll learn about linearization in Topic 28. 
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