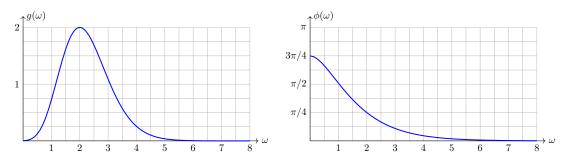
Problems Day 18, R 2/29/2024

Topic 9: Engineering language: input, gain, phase lag, frequency response (day 1 of 3) Jeremy Orloff


Problem 1. Consider the system $x'' + x' + 4x = 4\cos(5t)$.

- (a) Find the sinusoidal response.
- (b) Assume $\cos(5t)$ is the input. What are the gain and phase lag?
- (c) Assume $4\cos(5t)$ is the input. What are the gain and phase lag?

Problem 2. A system is modeled by x' + kx = kf(t), k > 0. We consider f(t) to be the input.

- (a) Solve the DE with input $B\cos(\omega t)$.
- (b) What are the gain and phase lag for the system?
- (c) Graph the gain. (Be sure to label your axes.)

Problem 3. A system modeled by a constant coefficient, linear DE has gain and phase lag as shown.

(a) If the input is $B\cos(2t)$, what is the periodic repsonse?

(b) If the input is $3\cos(2t) + 3\cos(6t) + 3\cos(8t)$, give a good approximation to the response.

(c) What input frequency has the biggest response?

Problem 4. Find all the resonant frequencies of the following systems.

(a) x'' + x' + 9x = f(t), f(t) =input.

- (b) x'' + 8x' + 7x = f(t), f(t) =input.
- (c) x'' + 8x' + 7x = f'(t), f(t) =input.

Problem 5. Consider the system 2x'' + 8x = f'(t), where f(t) is considered the input.

- (a) Find the periodic response to $f(t) = B\cos(\omega t)$, for all ω .
- (b) Give formulas for the gain and phase lag.
- (c) Plot the gain.
- (d) Plot the response when $\omega = 2$. Why do we say $g(2) = \infty$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.