Finish Topic 1

Jeremy Orloff

1 Agenda

- For tomorrow: Read Topic 2 notes
- Recap physical examples
- Our most important DE
- 2nd most important DE
- Checking solutions
- Constructing models using Δx , Δt
- Separable DEs (in problems)
- Geometric problems (in problems)

2 Physical examples

Newton's law of cooling:x' = -k(x-E) \Leftrightarrow x' + kx = kE.Hooke's law:mx'' = -kx \Leftrightarrow mx'' + kx = 0.Exponential growth and decay:y' = ay \Leftrightarrow y' - ay = 0.

3 The most important DE

$$\frac{dy}{dt} = ay, \quad a \text{ a constant (parameter)}$$
 (****)

- Says the rate y changes is proportional to y.

– Solution: $y(t) = Ce^{at}$, C and arbitrary constant. (Will derive this in the problems.) Checking that $y(t) = Ce^{at}$ is a solution to (****):

Left side of (****):
$$y' = aCe^{at}$$

Right side of (****): $ay = aCe^{at}$
Same \checkmark

(********) models:

- unconstrained population growth
- radioactive decay
- money in an interest bearing account
- initial spead of a disease

4 Second most important DE

$$\frac{dm''}{dx} + kx = 0, \qquad (\Leftrightarrow mx'' = -kx, \text{ Hooke's law}) \qquad (**)$$

<u>Solution:</u> $x(t) = c_1 \cos\left(\sqrt{\frac{k}{m}t}\right) + c_2 \sin\left(\sqrt{\frac{k}{m}t}\right).$

This is a two parameter family of solutions.

We will see how to derive this many times in the next few weeks.

5 Order of a DE = highest derivative in the DE

Example 1. y' = ay: 1st order \longrightarrow one parameter in the solution. mx'' + kx = 0: 2nd order \longrightarrow two parameters in the solution.

6 Modeling a DE using small changes

(See Section 1.7 in Topic 1 notes.)

Example 2. P(t) = a population of bacteria

$$\beta = 2\%$$
/hour = birth rate (β = Greek beta)
 $\delta = 1\%$ /hour = death rate (δ = Greek delta)

Model P(t) with a differential equation.

Solution: Pick a small interval of time $[t, t + \Delta t]$.

Let ΔP = change in P over this interval = births - deaths.

Over a small time interval, P is roughly constant, so

births $\approx \beta P(t) \Delta t$ (units: $\frac{1}{\text{hours}} \cdot \text{bacteria} \cdot \text{hours} = \text{bacteria})$ deaths $\approx \delta P(t) \Delta t$.

So, $\Delta P \approx (\beta - \delta) P \Delta t \longrightarrow \frac{\Delta P}{\Delta t} \approx (\beta - \delta) P.$

In the limit, as $\Delta t \to 0$, this becomes exact.

$$\frac{dP}{dt} = (\beta - \delta)P.$$

Amazingly, the same logic holds if β , δ , depend on t or P. (As long as they are continuous.)

7 Reminders

- In separable equations, don't forget lost solutions.
- Since slope $= \frac{dy}{dx}$, problems involving graphs can lead to DEs.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.