Solutions Day 2, T 2/6/2024

Topic 1: Introduction to differential equations (day 2) Jeremy Orloff

Problem 1. Solve $\frac{dy}{dt} = ay$, a a constant. Solution: Separate variables: $\frac{dy}{y} = a dt$. Integrate both sides: $\ln |y| = at + c$. Exponentiate: $|y| = e^c e^{at}$. If y < 0, then $y = -e^c e^{at}$. If y > 0, then $y = e^c e^{at}$. If y = 0, this is the lost solution.

More simply, $y(t) = ce^{at}$, where c is an arbitrary constants.

Problem 2. Check that $y(t) = c_1 \cos(2t) + c_2 \sin(2t)$ ($c_1, c_2 \text{ constants}$) solves y'' + 4y = 0. What physical system does this model? (There are many possible answers.)

Solution: We plug $y(t) = c_1 \cos(2t) + c_2 \sin(2t)$ into the DE y'' + 4y = 0 and verify the equation is true. Going slowly

$$\begin{split} y &= c_1 \cos(2t) + c_2 \sin(2t) \\ y' &= -2c_1 \sin(2t) + 2c_2 \cos(2t) \\ y'' &= -4c_1 \cos(2t) + -4c_2 \sin(2t) \\ \text{So, } 4y &= 4c_1 \cos(2t) + 4c_2 \sin(2t) \end{split}$$

Adding the last two equations, we see y'' + 4y = 0.

The DE models a mass on a spring (Hooke's Law: my'' = -ky), i.e., simple harmonic motion.

Possible units are: y in meters, t in seconds, mass = 1 kg, $k = 4 \text{ kg/sec}^2$.

Problem 3. Interpret Newton's law of cooling in words: T' = -k(T - E).

Solution: The DE says that the rate the temperature changes is proportional to the difference between the temperature of the body and that of its environment.

- k is a positive constant.
- The minus sign says that a body hotter than E cools and one colder than E warms.

• The greater the difference between the body and the environment, the faster the rate of change.

Problem 4. Solve $\frac{dy}{dt} = y^2$ with initial value y(0) = 1. Graph the solution.

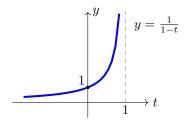
Solution: This is separable, $\frac{dy}{y^2} = dt$.

Integrating: $-\frac{1}{y} = t + c \implies y = -\frac{1}{t+c}.$

The initial condition allows us to determine the value of c.

$$y(0) = 1 = -\frac{1}{c} \quad \Rightarrow c = -1.$$

So, $y(t) = -\frac{1}{t-1} = \frac{1}{1-t}$. This has a vertical asymptote at t = 1.



Note: We only consider the solution for $-\infty < t < 1$. As explained in the Topic 1 notes, we require solutions to be defined on a single interval, e.g., $(-\infty, 1)$. The function $y(t) = \frac{1}{1-t}$ for $1 < t < \infty$ is a solution to the DE, but it doesn't match the initial condition. Because y(t) goes to ∞ as t goes to 1, we say y(t) blows up in a finite time.

Problem 5. A curve y = y(x) has the property that every tangent line goes through the point (1,0). Find a DE for this curve. Solve the DE to find all curves with this property.

Solution: The sketch shows a curve with the tangent line going through (1, 0).



Since y = y(x), the slope of the tangent is $\frac{dy}{dx}$.

Since the tangent contains the points (1,0) and (x,y), its slope is $\frac{y-0}{x-1}$.

Thus, $\boxed{\frac{dy}{dx} = \frac{y}{x-1}}$. This is separable: $\frac{dy}{y} = \frac{dx}{x-1}$. Integrate both sides: $\ln |y| = \ln |x-1| + c$. The absolute values mean: If x > 1, y > 0, then $y = \tilde{c}(x-1)$, with $\tilde{c} > 0$. If x > 1, y < 0, then $y = \tilde{c}(x-1)$, with $\tilde{c} < 0$. If x < 1, y > 0, then $y = \tilde{c}(x-1)$, with $\tilde{c} < 0$. If x < 1, y < 0, then $y = \tilde{c}(x-1)$, with $\tilde{c} < 0$. If x < 1, y < 0, then $y = \tilde{c}(x-1)$, with $\tilde{c} < 0$. The lost solution is $y(x) \equiv 0$. Putting this together, $y = \tilde{c}(x-1)$, where \tilde{c} is an arbitrary constant. That is, y(x) is any line that passes through (1,0).

Problem 6. Suppose Oryx (African antelope) have a natural growth rate of k = 0.02/year (made up number). Suppose they are "harvested" at a rate of h = 1000 oryx/year. Model the population x(t) by finding a DE from first principles using Δx and Δt . How does your model change if $h = 10000 \sin(2\pi t)$?

What is happening if h < 0?

Solution: Over a very small time interval $[t, t + \Delta t]$, the population changes:

Change due to natural growth (call it Δx_N): $\Delta x_N \approx kx \Delta t$.

Change due to harvesting (call it Δx_h): $\Delta x_h \approx -h \Delta t$.

Note: Δx_N is approximate because x is actually changing over the interval. If Δt is small, the error will be of the order $(\Delta t)^2$, so we can ignore it as $\Delta \to 0$.

Combining the changes, $\Delta x = \Delta x_N + \Delta x_h \approx kx\Delta t - h\Delta t$. Thus, $\frac{\Delta x}{\Delta t} \approx kx - h$. In the limit as $\Delta t \to 0$, we get

$$\frac{dx}{dt} = kx - h = 0.02x - 1000$$

If h is a function of t, the derivation is unchanged. We get

$$\frac{dx}{dt} = kx - h(t) = 0.02x - 1000\sin(2\pi t).$$

When h is negative, oryx are being added to the population. Negative harvesting is called stocking.

Problem 7. Interpret Hooke's law, $m \frac{d^2x}{dt^2} = -kx$ in words.

What is the dimension of k?

Solution: The equation says that, when displaced from equilibrium, the spring exerts a restoring force, i.e., the force is always directed towards the equibrium position. The magnitude of the force is proportional to displacement.

k has dimension mass/time², e.g., kg/sec².

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.