Solutions Day 24, F 3/8/2024

Topic 11: Numerical methods for $y'=f(x,y),\,y(x_0)=y_0$. Jeremy Orloff

Problem 1. Let y' = x - y, y(1) = 3.

(a) Use Euler's method to estimate y(2) using 3 steps.

Solution: Make a table using $h = \frac{2-1}{3} = \frac{1}{3}$.

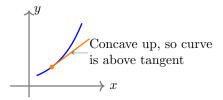
j	x_j	y_{j}	m_{j}	$m_j \cdot h$
0	1	3	-2	-2/3
1	4/3	7/3	-1	-1/3
2	5/3	2	-1/3	-1/9
3	2	17/9		

Estimate: $y(3) \approx 17/9$.

(b) Find the concavity of the integral curve at x = 1. Use this to predict if your estimate in Part (a) is too high or too low.

Solution: The equation y' = x - y implies y'' = 1 - y'.

So, when (x, y) = (1, 3), we have $y'(1) = 1 - 3 = -2 \implies y''(1) = 1 - (-2) = 3 > 0$. Since y''(1) > 0, the curve is concave up at (1, 3). This means the first step is probably an underestimate and we would predict that after 3 steps we still have an underestimate.



Problem 2. Challenge: Use Euler's method to estimate e.

-Pick your DE and IC

-Use various numbers of steps to estimate e.

Solution: DE: y' = y, IC: y(0) = 1. We know this has solution $y = e^x$ which means y(1) = e.

So, to estimate e, we will use Euler's method to estimate y(1). The algebra allows us to work out some nice formulas.

In general, a step starts at (x_i, y_i) then $m_i = y_i$ and $m_i h = y_i h$. Thus,

$$x_{j+1} = x_j + h, \quad y_{j+1} = y_j + m_j h = y_j + y_j h = y_j (1+h).$$

This implies,

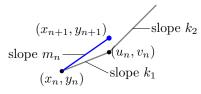
$$y_1 = (1+h)y_0, \quad y_2 = (1+h)y_1 = (1+h)^2y_0, \quad \dots \quad y_n = (1+h)^ny_0.$$

Since $y_0 = 1$, we have $y_n = (1 + h)^n$. In the following table, n = number of steps to get from x = 0 to x = 1. We did the computations with a calculator.

n	=2	$\Rightarrow h = 1/2,$	y(1)	$\approx y_2$	$=\left(1+\frac{1}{2}\right)^2$	= 2.25
n	=5	$\Rightarrow h = 1/5,$	y(1)	$\approx y_5$	$= \left(1 + \frac{1}{5}\right)^5$	= 2.49
n	= 10	$\Rightarrow h = 1/10,$	y(1)	$\approx y_{10}$	$= \left(1 + \frac{1}{10}\right)^{10}$	= 2.59
n	= 100	$\Rightarrow h = 1/100,$	y(1)	$\approx y_{100}$	$= \left(1 + \frac{1}{100}\right)^{100}$	= 2.705
n	= 500	$\Rightarrow h = 1/500,$	y(1)	$\approx y_{500}$	$= \left(1 + \frac{1}{500}\right)^{500}$	= 2.71

Problem 3. Improved Euler is the following algorithm for choosing m_n .

- Fixed stepsize: Choose h at the start. It is the same for all steps.
- Choice of m_n : (see figure)



$$k_1=f(x_n,y_n);\ (u_n,v_n)=$$
 regular Euler step: $u_n=x_n+h,\ v_n=y_n+k_1h.$
 $k_3=f(u_n,v_n)$
$$m_n=\frac{k_1+k_2}{2}$$

• Then (as always), $x_{n+1} = x_n + h$, $y_{n+1} = y_n + m_n h$.

Let y' = y, y(0) = 1. Estimate y(1) using 3 steps and improved Euler. Solution: Following the algorithm we have

$$h = 1/3, \quad k_1 = y_n, \quad u_n = x_n + h, \quad v_n = y_n + k_1 h, \quad k_2 = v_n, \quad m_n = \frac{k_1 + k_2}{2}$$

We can put the calculation into a table.

n	x_n	y_n	k_1	u_n	v_n	k_2	m_n	$m_n h$
0	0	1	1	0.333	1.333	1.333	1.167	0.389
1	0.333	1.389	1.389	0.667	1.852	1.852	1.620	0.540
2	0.667	1.929	1.929	1.0	2.572	2.572	2.251	0.750
3	1	2.679						

So, $y(1) \approx y_3 \approx 2.679$. The exact answer is $y(1) = e \approx 2.718$. Notice how much faster improved Euler converges than Euler did in the previous problem.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.