Topic 12: Autonomous systems (day 1 of 2) Jeremy Orloff

1 Agenda

- Autonomous DEs: y' = f(y)
 - Understand behavior without solving exactly
 - Isoclines are horizontal lines
 - Time invariant
 - Equilibria where f(y) = 0, called critical points
 - Nullclines = integral curves = equilibrium solutions
 - Can summarize with the phase line
 - Bifurcation diagrams (tomorrow)

2 Autonomous DEs

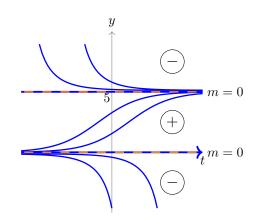
y' = f(y) is called autonomous.

Autonomous = self regulating, i.e., y controls how y changes.

3 Theory

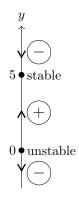
- The equation $\frac{dy}{dt} = f(y)$ is separable: $\frac{dy}{f(y)} = dt$
- We have lost solutions where f(y) = 0. They are now called equilibrium solutions
- Values of y where f(y) = 0 are called critical points
- Can ask if each equilibrium is stable or unstable

Example 1. In this example, we will get to the phase line via the direction field.


Consider y' = 3(5 - y)y (logistic population model).

Plot the nullclines and add \oplus , \ominus in regions where y' is positive or negative.

Draw some integral curves.


Draw the phase line.

Solution: Nullcline: $y' = 3(5-y)y = 0 \longrightarrow y = 0, y = 5$, i.e., horizontal lines.

In this special case, nullclines are also integral curves (equilbrium solutions). It's easy to check that $y(t) \equiv 5$ is a solution.

Note: The other integral curves can't cross the horizontal integral curves y = 5 and y = 0. To get the phase line, we reduce the above picture to just the y-axis.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.