Solutions Day 30, M 3/18/2024

Topic 14: Row reduction (day 1) Jeremy Orloff

Problem 1. Let $A = \begin{bmatrix} 1 & 2 & 2 & 11 \\ 2 & 4 & 1 & 10 \\ 3 & 6 & 0 & 9 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

(a) Use row reduction to show that R = RREF(A).

Solution: Let R_1 be Row 1, etc.

$$A = \begin{bmatrix} 1 & 2 & 2 & 11 \\ 2 & 4 & 1 & 10 \\ 3 & 6 & 0 & 9 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 2 & 11 \\ 0 & 0 & -3 & -12 \\ 0 & 0 & -6 & -24 \end{bmatrix} \xrightarrow{R_3 = -\frac{1}{3} \cdot R_3} \begin{bmatrix} 1 & 2 & 2 & 11 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -6 & -24 \end{bmatrix}$$
$$\xrightarrow{R_3 = R_3 + 6R_2} \begin{bmatrix} 1 & 2 & 2 & 11 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 = R_1 - 2R_2} \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R \blacksquare$$

(b) Identify the free and pivot variables of R.

Solution: Let C_1 be Column 1, etc.

Pivot columns: C_1, C_3 . Free columns: C_2, C_4 .

(c) What is rank(A)?

Solution: Rank = number of pivots = 2.

(d) Give the relations between the free and pivot columns of R. (That is, write each free column as a linear combination of the pivot columns.)

Solution: It's easy to see in R that $C_2 = 2C_1$, $C_4 = 3C_1 + 4C_3$.

(e) Verify that the columns of A have the same relations as in R.

Solution: Check $C_2 = 2C_1$: $2C_1 = 2\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 2\\4\\6 \end{bmatrix} = C_2 \blacksquare$.

Check $C_4 = 3C_1 + 4C_3$: $3C_1 + 4C_3 = 3\begin{bmatrix} 1\\2\\3 \end{bmatrix} + 4\begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 11\\10\\9 \end{bmatrix} = C_4 \blacksquare$.

(f) Use the relations between the columns of R to find a vector \mathbf{v} such the $R\mathbf{v} = \mathbf{0}$.

Solution: $C_2 = 2C_1 \implies -2C_1 + C_2 = \mathbf{0}$. Viewing matrix multiplication as a linear combination of the columns, we get $R \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. So, $\mathbf{v} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$ is a solution to $R\mathbf{v} = \mathbf{0}$.

Likewise,
$$C_4 = 3C_1 + 4C_3 \implies -3C_1 - 4C_3 + C_4 = \mathbf{0}$$
. So, $\mathbf{v} = \begin{bmatrix} -3\\ 0\\ -4\\ 1 \end{bmatrix}$ solves $R\mathbf{v} = \mathbf{0}$.

(g) Verify that $A\mathbf{v} = \mathbf{0}$. (v your answer to the previous part)

Solution: Since A has the same relationships between its columns as R, the same logic as in Part (f), will produce the same vectors. That is,

$$A\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} = -2C_1 + C_2 = \mathbf{0}, \qquad A\begin{bmatrix} -3\\0\\-4\\1 \end{bmatrix} = -3C_1 - 4C_3 + C_4 = \mathbf{0}.$$

(h) Find a solution to $A\mathbf{x} = \begin{bmatrix} 0\\ 3\\ 6 \end{bmatrix}$ by setting the free variables to 0 and solving the resulting

 3×2 system using row reduction on the augmented matrix.

Solution: Setting the free variables to 0 means letting $x_2 = 0$, $x_4 = 0$. So we have to solve

$$A \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix} \implies x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}.$$

In matrix form this is $\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$. So the augmented matrix is $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 3 \\ 3 & 0 & 6 \end{bmatrix}$.

The row reduction steps are

Back in matrix form: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \Rightarrow x_1 = 2, x_3 = -1.$ Thus we have a particular solution $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \end{bmatrix}.$ MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.