Solutions Day 31, T 3/19/2024

Topic 14: Row reduction (day 2)

Jeremy Orloff

Problem 1. Let $A = \begin{bmatrix} 1 & 2 & 2 & 11 \\ 2 & 4 & 1 & 10 \\ 3 & 6 & 0 & 9 \end{bmatrix}$. We'll tell you that $RREF(A) = R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(a) Identify the free and pivot colums of R and A.

Solution: In both R and A, Col_1 , Col_2 are pivot columns and Col_2 , Col_4 are free.

(b) (i) Find a basis for Null(A). Also, find Null(A).

- (ii) How many elements are there in the basis? How many elements are there in Null(A)?
- (iii) What is dim(Null(A))?

(iv) Find Null(R). (Hint: This requires no more work.)

(v) Null(A) is a subspace of \mathbb{R}^n , what is n?

Solution: Using

Γ1	2	0	3 J
0	0	1	4
L 0	0	0	0]
Piv	Free	Piv	Free
x_1	x_2	x_3	x_4
-2	1	0	0
-3	0	-4	1

We write the basic null vectors below the matrix as follows:

- We set $\underbrace{x_2 = 1, x_4 = 0}_{\text{Free variables can be set freely}}$ and see that $\underbrace{x_1 = -2, x_3 = 0}_{\text{Solve for values of pivot variables that make}}$

the linear combination of columns 0.

– Likewise, we set $x_2 = 0$, $x_4 = 1$ and see that $x_1 = -3$, $x_3 = -4$.

(i) So a basis of Null(A) is
$$\left\{ \begin{bmatrix} -2\\1\\0\\-4\\1 \end{bmatrix} \right\}$$
 and Null(A) =
$$\left\{ c_1 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} -3\\0\\-4\\1 \end{bmatrix} \right\}.$$

(ii) The basis has 2 elements. Null(A) has infinitely many elements.

- (iii) $\dim(\operatorname{Null}(A)) = 2.$
- (iv) $\operatorname{Null}(R) = \operatorname{Null}(A)$
- (v) Null(A) is a subspace of \mathbb{R}^4 .
- (c) (i) Find a basis of Col(A). Also, find Col(A).
- (ii) How many elements in the basis? In Col(A)?

- (iii) What is $\dim(Col(A))$? What is the rank of A?
- (iv) Find Col(R).
- (v) Does Col(A) = Col(R)?

Solution: (i) Basis for $\operatorname{Col}(A) = \operatorname{pivot}$ columns of $A = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}.$

 $\operatorname{Col}(A) = \operatorname{span} \text{ of basis} = \left\{ c_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$

(ii) The basis has 2 elements. Col(A) has infinitely many elements.

(iii) $\dim(\operatorname{Col}(A)) = 2 = \operatorname{number} \text{ of pivots} = \operatorname{rank}(A).$

(iv) $\operatorname{Col}(R) = \operatorname{span}$ of pivot columns of $R = \left\{ c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}.$

(v) Clearly $\operatorname{Col}(A) \neq \operatorname{Col}(R)$, e.g., the 3rd entry in vectors in $\operatorname{Col}(R)$ is always 0. This is not true of $\operatorname{Col}(A)$.

(d) Find a particular solution to $A\mathbf{x} = \begin{bmatrix} 0\\ 3\\ 6 \end{bmatrix}$. Do this by setting the free variables to 0 and

 $solving \ the \ smaller \ system \ by \ row \ reduction.$

Solution: The equation to solve is

$$A\begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix} = x_1\begin{bmatrix} 1\\2\\3\end{bmatrix} + x_2\begin{bmatrix} 2\\4\\6\end{bmatrix} + x_3\begin{bmatrix} 2\\1\\0\end{bmatrix} + x_4\begin{bmatrix} 11\\10\\9\end{bmatrix} = \begin{bmatrix} 0\\3\\6\end{bmatrix}$$

Set the free variables, x_2 and x_4 to 0 to get a smaller system

$$x_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + x_3 \begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\3\\6 \end{bmatrix}.$$

 Augmented matrix
 $\begin{bmatrix} 1 & 2 & | & 0 \\ 2 & 1 & | & 3 \\ 3 & 0 & | & 6 \end{bmatrix}$ Row reduction gives
 $\begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{bmatrix}$

This corresponds to 3 equations $\begin{cases} x_1 &= 2\\ x_3 &= -1\\ 0 &= 0 \end{cases}$

So we have a particular solution $\begin{bmatrix} 2\\0\\-1\\-1\end{bmatrix}$

(e) Give the general solution to $A\mathbf{x} = \begin{bmatrix} 0\\ 3\\ c \end{bmatrix}$.

Solution: From Part (b), $\mathbf{x}_h = c_1 \begin{bmatrix} -2\\1\\0\\-4\end{bmatrix} + c_2 \begin{bmatrix} -3\\0\\-4\\1\end{bmatrix}$. So the general solution is $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h = \begin{bmatrix} 2\\0\\-1\\0 \end{bmatrix} + c_1 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} -3\\0\\-4\\1 \end{bmatrix}.$

Problem 2. Let $R = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(a) Give the relations between the free and pivot columns.

Solution: Pivol columns are C_1, C_3 . Free columns are C_2, C_4 . ${\rm Relations:} \quad C_2 = 3C_1, \ \ C_4 = 2C_1 + 5C_3.$ (b) Find a matrix $A = \begin{bmatrix} 2 & * & 6 & * \\ 5 & * & 1 & * \\ 7 & * & 2 & * \end{bmatrix}$ that has RREF R.

Solution: Use the same relations as Part (a) where $C_1 = \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix}$, $C_3 = \begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix}$.

So,
$$C_2 = 3C_1 = \begin{bmatrix} 6\\15\\21 \end{bmatrix}$$
, $C_4 = 2C_1 + 5C_3 = 2\begin{bmatrix} 2\\5\\7 \end{bmatrix} + 5\begin{bmatrix} 6\\1\\2 \end{bmatrix} = \begin{bmatrix} 34\\15\\24 \end{bmatrix}$.
So, $\begin{bmatrix} 2 & 6 & 6 & 34\\5 & 15 & 1 & 15\\7 & 21 & 2 & 24 \end{bmatrix}$.

Problem 3. For the matrix $A = \begin{bmatrix} 1 & 2 & 2 & 11 \\ 2 & 4 & 1 & 10 \\ 3 & 6 & 0 & 9 \end{bmatrix}$, the pivot columns are Columns 1 and 3.

Solve $A\mathbf{x} = \begin{bmatrix} 1\\ 3\\ 6 \end{bmatrix}$.

Solution: As in 1(d), we solve the simpler system $x_1 \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} + x_3 \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \\ 6 \end{vmatrix}$.

Augmented matrix:

$$\begin{bmatrix} 1 & 2 & | & 1 \\ 2 & 1 & 3 \\ 3 & 0 & | & 6 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 2 & | & 1 \\ R_3 = R_3 - 3R_1 \\ 0 & -3 & | & 1 \\ 0 & -6 & | & 3 \end{bmatrix} \xrightarrow{R_3 = R_3 - 2R_2} \begin{bmatrix} 1 & 2 & | & 1 \\ 0 & -3 & | & 1 \\ 0 & 0 & | & 1 \end{bmatrix}$$

This is 3 equations, the bottom one is $0 \cdot x_1 + 0 \cdot x_3 = 1$. This is impossible, so there are no solutions.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.