Topic 16: Eigenstuff (day 1) Jeremy Orloff

1 Agenda

- Eigenvalues and eigenvectors ******* More important than x' = ax *******
 - Definition, algorithm, 2×2 shortcuts
 - Complex λ (in problems)
 - Repeated λ (in problems, if time)
 - Diagonal matrices
- Tomorrow: Systems of DEs, decoupling, diagonalization

2 Topic 15 key point

A a square matrix.

det $A = 0 \leftrightarrow \text{Null}(A)$ is nontrivial (also, no A^{-1}).

Reason: For a square matrix, det $A = 0 \leftrightarrow \text{RREF}$ has a row of zeros.

3 Definition of eigenvalues/eigenvectors

Eigen = own, characteristic.

 $A = n \times n$ matrix \leftarrow Important that A is square.

Definition: If **v** is a nonzero vector, λ is a scalar and

 $A\mathbf{v} = \lambda \mathbf{v}$ *** Definition –keep it in mind.

then λ is an eigenvalue of A and **v** is a corresponding eigenvector.

We call $A\mathbf{v} = \lambda \mathbf{v}$ the eigenequation. Please remember this. It is the answer to the question: What is an eigenvalue/vector? Don't lose sight of it as we learn computational algorithms.

4 Computational algorithm

- Model example
- Justification
- 2×2 shortcuts
- Complex and repeated eigenvalues (in problems)

Example 1. (Model example) Let $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$. Find its eigenvalues and a basis for each eigenspace.

Solution: Step 1. Find the eigenvalues λ : $|A - \lambda I| = 0$ (characteristic equation)

$$A - \lambda I = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 3 \\ 1 & 2 - \lambda \end{bmatrix}.$$

Taking the determinant and setting it to 0 gives

$$\det(A-\lambda I)=(4-\lambda)(2-\lambda)-3=\lambda^2-6\lambda+5=0$$

The roots of this are $\lambda = 5, 1.$

Step 2. For each eigenvalue, find basis vectors for the eigenspace, i.e., find a basis of $\text{Null}(A - \lambda I)$.

$$\lambda_1 = 5; \quad A - \lambda I = \begin{bmatrix} -1 & 3\\ 1 & -3 \end{bmatrix}.$$
 This has RREF $R = \begin{bmatrix} 1 & -3\\ 0 & 0 \end{bmatrix}.$ The null space is 1 dimensional, a basis is $\mathbf{v_1} = \begin{bmatrix} 3\\ 1 \end{bmatrix}.$

 $\lambda_1 = 1; \quad A - \lambda I = \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix}.$ This has RREF $R = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. The null space is 1 dimensional, a basis is $\mathbf{v_2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Remember, any scalar multiple of these eigenvectors is also an eigenvector with the same eigenvalue.

Summary: eigenvalues 5, 1 basic eigenvectors $\begin{bmatrix} 3\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1 \end{bmatrix}$

Let's reemphasize a key point: Eigenspaces are null spaces.

4.1 Justification for the algorithm

Eigenequation: $A\mathbf{v} = \lambda \mathbf{v} = \lambda I \mathbf{v}$ (Need $\mathbf{v} \neq 0, \lambda$ a scalar) $\longrightarrow A\mathbf{v} - \lambda I \mathbf{v} = 0 \longrightarrow (A - \lambda I) \mathbf{v} = 0.$

This says that \mathbf{v} is in Null $(A - \lambda I)$.

Since $\mathbf{v} \neq 0$, Null $(A - \lambda I)$ must be nontrivial.

This can only happen if $det(A - \lambda I) = 0$, i.e., if λ satisfies the characteristic equation.

In short, eigenvalues λ have $\det(A - \lambda I) = 0$, eigenvectors **v** are in Null $(A - \lambda I)$.

4.2 Shortcut for 2 by 2 matrices

For 2×2 matrices, we don't really need to use row reduction to find eigenspaces.

In our model example with $\lambda = 5$, we had $A - \lambda I = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix}$. We needed a null vector $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ This must be perpendicular to the top row $\begin{bmatrix} -1 & 3 \end{bmatrix}$. So we can take

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(We switched the order of the entries of the top row and changed one sign.)

Note: Since we know the null space is nontrivial, this must be perpendicular to the bottom row as well. (Check this!)

5 Diagonal matrices (nice and easy!)

Example 2. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
. Verify the eigenpairs are
 $\lambda = 1, \quad 3, \quad 5, \quad (\text{diagonal entries})$
 $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad (\text{standard basis})$

Solution: Check the eigenequation

$$A \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 3 & 0\\0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}. \text{ So, } A \begin{bmatrix} 1\\0\\0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix} \checkmark$$
$$A \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 3 & 0\\0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\3\\0 \end{bmatrix}. \text{ So, } A \begin{bmatrix} 0\\1\\0 \end{bmatrix} = 3 \cdot \begin{bmatrix} 0\\1\\0 \end{bmatrix} \checkmark$$
$$A \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 3 & 0\\0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\5 \end{bmatrix}. \text{ So, } A \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 5 \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix} \checkmark$$

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.