Solutions Day 34, F 3/22/2024

Topic 16: Eigenstuff (day 1) Jeremy Orloff

Problem 1. (Eigenstuff and linearity) Say A is a 3×3 matrix with eigenvalues $\lambda = 3, 4, 5$ and corresponding eigenvectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$Compute \ A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A \left(\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right), \quad A \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}.$$

Solution: $A\begin{bmatrix}1\\2\\1\end{bmatrix} = 3 \cdot \begin{bmatrix}1\\2\\1\end{bmatrix}$ by the definition of eigenvalue and eigenvector.

$$\text{Likewise } A \left(\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right) = A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 7 \end{bmatrix}.$$

By inspection we see, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. So,

$$A \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 4 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ -1 \end{bmatrix}.$$

Problem 2. Find the eigenvalues and a basis for each eigenspace of the given matrices. Check your answer by multiplying the matrix times the vector.

$$A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}.$$

1

Solution: A: characteristic equation: $|A - \lambda I| = \begin{vmatrix} 6 - \lambda & 5 \\ 1 & 2 - \lambda \end{vmatrix} = \lambda^2 - 8\lambda + 7 = 0.$

Roots: 1, 7 (eigenvalues)

Eigenspaces:

$$\lambda = 1: \quad A - \lambda I = \begin{bmatrix} 5 & 5 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \stackrel{\text{basis for Null}(A - I)}{\text{basis for egenspace}} \text{ is } \begin{bmatrix} -5 \\ 5 \end{bmatrix} \text{ or better } \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$\lambda = 7 \colon \quad A - \lambda I = \begin{bmatrix} -1 & 5 \\ 1 & -5 \end{bmatrix} \quad \Rightarrow \stackrel{\text{basis for Null}(A-7I)}{\text{basis for egenspace}} \text{ is } \begin{bmatrix} 5 \\ 1 \end{bmatrix}.$$

$$\text{Check: } A \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad \blacksquare$$

$$A \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 35 \\ 7 \end{bmatrix} = 7 \cdot \begin{bmatrix} 5 \\ 1 \end{bmatrix} \qquad \blacksquare$$

Summary: eigenvalue/eigenvector pairs for A are $\begin{bmatrix} \lambda & =1, & 7 \\ \mathbf{v} & = \begin{bmatrix} -1 \\ 1 \end{bmatrix} & \begin{bmatrix} 5 \\ 1 \end{bmatrix}$.

$$B: \quad \text{characteristic equation} \ |B-\lambda I| = \begin{vmatrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \end{vmatrix} = (1-\lambda)(4-\lambda)(6-\lambda) = 0.$$

Eigenvalues (roots): $\lambda = 1, 4, 6$. (B is triangular, so eigenvalues = diagonal entries.) Eigenspaces:

 $\lambda=1$: $B-\lambda I=\begin{bmatrix}0&2&3\\0&3&5\\0&0&5\end{bmatrix}.$ We need a basis of $\mathrm{Null}(B-I).$ Using row reduction to find the RREF we get

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{basis of eigenspace } = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ (eigenvector associated with } \lambda = 1)$$

$$\begin{bmatrix} F & P & P \\ 1 & 0 & 0 \end{bmatrix}$$

$$\lambda=4$$
: $B-\lambda I=\begin{bmatrix} -3 & 2 & 3\\ 0 & 0 & 5\\ 0 & 0 & 2 \end{bmatrix}$. Find the null space by row reduction:

$$RREF = \begin{bmatrix} 1 & -2/3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow basic eigenvector = \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix} \text{ or } \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

$$P \quad F \quad P$$

$$2/3 \quad 1 \quad 0$$

$$\lambda=6$$
: $B-\lambda I=\begin{bmatrix} -5 & 2 & 3\\ 0 & -2 & 5\\ 0 & 0 & 0 \end{bmatrix}$. Find the null space by row reduction.

Summary:
$$\begin{vmatrix} \lambda & = 1, & 4, & 6 \\ \mathbf{v} & = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, & \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, & \begin{bmatrix} 8/5 \\ 5/2 \\ 1 \end{bmatrix}$$

Check:

$$B \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3\\0 & 4 & 5\\0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

$$B \begin{bmatrix} 2\\3\\0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3\\0 & 4 & 5\\0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 2\\3\\0 \end{bmatrix} = \begin{bmatrix} 8\\12\\0 \end{bmatrix} = 4 \begin{bmatrix} 8\\12\\0 \end{bmatrix}$$

$$B \begin{bmatrix} 8/5\\5/2\\1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3\\0 & 4 & 5\\0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 8/5\\5/2\\1 \end{bmatrix} = \begin{bmatrix} 48/5\\15\\6 \end{bmatrix} = 6 \begin{bmatrix} 8/5\\5/2\\1 \end{bmatrix}$$

$$\blacksquare$$

Problem 3. (Complex λ) $A = \begin{bmatrix} 3 & 5 \\ -5 & 3 \end{bmatrix}$ -same instructions as Problem 2.

Solution: Characteristic equation: $|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 5 \\ -5 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 + 25 = 0.$

Eigenvalues (roots): $(3 - \lambda)^2 = -25$ $\Rightarrow 3 - \lambda = \pm 5i$ $\Rightarrow \lambda = 3 \pm 5i$.

Eigenspaces

$$\lambda = 3 + 5i \colon A - \lambda I = \begin{bmatrix} -5i & 5 \\ -5 & -5i \end{bmatrix} \xrightarrow{2 \times 2 \text{ trick}} \text{ basic eigenvector } = \begin{bmatrix} 5 \\ 5i \end{bmatrix} \text{ or } \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

 $\lambda = 3 - 5i$: Eigenvector = conjugate of one for 3 + 5i: $\begin{bmatrix} 1 \\ -i \end{bmatrix}$.

Summary of eigenvalue/vector pairs: $\begin{vmatrix} \lambda &= 3+5i & 3-5i \\ \mathbf{v} &= \begin{bmatrix} 1\\i \end{bmatrix}, & \begin{bmatrix} 1\\-i \end{bmatrix}.$

Check:
$$A \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} 3+5i \\ -5+3i \end{bmatrix} = (3+5i) \cdot \begin{bmatrix} 1 \\ i \end{bmatrix}$$

(The other pair is similar.)

Problem 4. (Diagonal matrices) Same instructions as Problem 2.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

Solution: Eigenvalues are diagonal entries. Eigenvectors are corresponing standard basis vectors.

For A:
$$\begin{bmatrix} \lambda & =2, & 3 \\ \mathbf{v} & = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix}$$
 For B:
$$\begin{bmatrix} \lambda & =2, & 3, & 4 \\ \mathbf{v} & = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, & \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Checking this is easy.

Problem 5. (Repeated λ) Same instructions as Problem 2.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

Why is B called 'defective'?

Solution: A is diagonal, so $\begin{bmatrix} \lambda & = 2, & 2 \\ \mathbf{v} & = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

B is triangular, so eigenvalues = diagonal entries: 2, 2.

Eigenspace for $\lambda = 2$.

$$B-2I=\begin{bmatrix}0&1\\0&0\end{bmatrix}\quad\text{basis of Null}(B-2I)\text{ is }\begin{bmatrix}1\\0\end{bmatrix}\text{ (one dimensional)}.$$
 For P 1 = 0

Summary $\begin{bmatrix} \lambda & = & 2, 2 \\ \mathbf{v} & = & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}$ (2 eigenvalues, only 1 independed eigenvector.)

This is called defective because there aren't the expected number of independent eigenvectors

C is triangular, so eigenvalues = diagonal entries: 2, 3, 2.

Eigenspaces:

$$\lambda = 2: \quad C - 2I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{swap } R_1, \ R_2} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{Basic eigenvectors: } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}.$$

$$F \quad P \quad F$$

$$1 \quad 0 \quad 0$$

$$0 \quad -2 \quad 1$$

$$\lambda = 3 \colon \quad C - 3I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix} \overset{\text{RREF}}{\leadsto} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{Basic eigenvector: } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Summary
$$\begin{array}{cccc} \lambda & = & 2, 2, & 3 \\ \mathbf{v} & = & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}, & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

${\sf MIT\ OpenCourseWare}$

https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.