Topic 2: Linear Systems Jeremy Orloff

1 Agenda

- For tomorrow, read Topic 3 notes
- First-order linear DEs
- Variation of parameters formula
- Superposition principle (also called linearity)

2 First-order linear DEs

General form: A(t)y' + B(t)y = C(t)

Standard form: y' + p(t)y = q(t)

- Right now we identify linear equations by their form. Later, we will use their properties.
- Sometimes call q(t) "input" to the DE
- Always work with standard form

(I)	y' + p(t)y = q(t)	(inhomogeneous DE)
(H)	y' + p(t)y = 0	(homogeneous DE)

Do problem 1

2.1 Dot notation

 $\frac{dy}{dt} = y' = \dot{y}$ all mean the same thing. The dot is reserved for derivatives with respect to time.

3 Variation of parameters formula

Solution to (H): $y_h(t) = e^{-\int p(t) dt}$ (separable DE) Solution to (I): $y(t) = y_h(t) \left[\int \frac{q(t)}{y_h(t)} dt + C \right] = y_h(t) \int \frac{q(t)}{y_h(t)} dt + C y_h(t).$ Proof: In Topic 2 notes – very pretty.

Examples in problems.

4 Superposition principle (= linearity)

4.1 Linear combinations (also called superposition)

If f_1, f_2 are functions and c_1, c_2 are constants then

$$f(t) = c_1 f_1(t) + c_2 f_2(t)$$

is called a linear combination of f_1 and f_2 . Superposition principle

If
$$y_1$$
 solves $y' + p(t)y = q_1(t)$
and y_2 solves $y' + p(t)y = q_2(t)$ same $p(t)$, different $q(t)$

then, for any constants c_1, c_2

$$y = c_1 y_1 + c_2 y_2 \quad \text{solves} \quad y' + p(t) y = c_1 q_1 + c_2 q_2$$

In words, a linear combination of the inputs produces a linear combination of the solutions.

- The hypothesis y_1 solves $y'+p(t)y=q_1(t)$ can also be expressed as $y_1'+p(t)y_1=q_1(t).$ (Likewise for $y_2.)$
- Superposition/linearity is ubiquitous and super-important throughout math, science and engineering.
- It is always easy to check if linearity holds. (You just have to think to ask.)

See extended Examples 2.6, 2.7 in the Topic 2 notes.

4.2 Other familiar places where linearity holds

$$\begin{split} \text{Integrals:} \quad & \int c_1 f_1(x) + c_2 f_2(x) \, dx = c_1 \int f_1(x) \, dx + c_2 \int f_2(x) \, dx. \\ \text{Multiplication:} \quad & a(c_1 x_1 + c_2 x_2) = c_1 a x_1 + c_2 a x_2. \\ \text{Matrix multiplication:} \quad & M(c_1 \mathbf{v_1} + c_2 \mathbf{v_2}) = c_1 M \mathbf{v_1} + c_2 M \mathbf{v_2}. \end{split}$$

4.3 Examples: incorrectly assuming linearity

$$\sqrt{a^2 + b^2} \neq a + b$$
$$\frac{1}{a+b} \neq \frac{1}{a} + \frac{1}{b}$$

(Assuming these are equalities is incorrectly assuming linearity.)

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.