Topic 20: Delta functions (day 2) Jeremy Orloff

1 Agenda

- Impulses: add something all at once, e.g., lemmings or momentum
- $\delta(t)$ as impulsive input to DEs
- Generalized derivatives
- Algebraic explanation for post-initial conditions after impulse. (If time.)

2 Solving P(D)x = impulse: mechanics of solving

Do problems 1, 2, 4 from last time.

3 Physical impulses

Impulse: input all at once.

- Ideally: input rate = ∞ over infinitesimal time. Total amount input is finite.
- Non-ideally: input rate is very large over a very short time.
- Causes a jump in whatever is being input.
- For a unit jump, the rate of input is $\frac{du}{dt} = \delta(t)$. This has dimension $\frac{\text{something}}{\text{time}}$.

3.1 First-order system

First-order system: $x' + kx = \delta(t)$. Say x = lemmings, then $\delta(t)$ is in $\frac{\text{lemmings}}{\text{time}}$. Input at rate $\delta(t)$ causes a unit jump in the number of lemmings between between $t = 0^-$ and $t = 0^+$.

Likewise, input $\delta(t-a)$ would cause a unit jump between times $t = a^-$ and $t = a^+$.

3.2Unit impulse as a limit of boxes

3.3Second-order systems (springs)

For a damped spring system mx'' + bx' + kx = f(t), the input has units of force. As a rate,

$$f(t) = \text{ force } = \frac{\text{kg} \cdot \text{m/sec}}{\text{sec}} = \frac{\text{momentum}}{\text{sec}}.$$

That is, force adds momentum over time, i.e., it changes mx'.

Example 1. Consider $mx'' + bx' + kx = 5\delta(t)$, $x(0^-) = b_0$, $x'(0^-) = b_1$.

Give the pre impulse and post impulse initial conditions.

Solution: Pre-IC: $x(0^-) = b_0, \ x'(0^-) = b_1$ (These were given to us.) The impulse causes no change in position. So, $x(0^+) = x(0^-) = b_0$. The impulse adds 5 units of momentum. So,

(0) (α) I(0|) I(0-) F(

$$\underbrace{mx'(0^+)}_{\text{Post-IC}} = \underbrace{mx'(0^-)}_{\text{Pre-IC}} + \underbrace{5}_{\text{impulse}} \longrightarrow \underbrace{x'(0^+)}_{\text{Post-IC}} = x'(0^-) + 5/m = b_1 + 5/m.$$

$$\underbrace{momentum}_{\text{post-IC}} \longrightarrow \underbrace{x'(0^+)}_{\text{Post-IC}} = \frac{x'(0^-)}{1 + 5/m} = b_1 + 5/m.$$

Input causes a jump in momentum not position.

$\mathbf{3.4}$ Third-order systems

r

Third-order system: $ax''' + bx'' + cx' + dx = 5\delta(t)$.

Note: $5\delta(t)$ has the same units as ax''', i.e., units of ax''/time. So input adds units of ax'' over time.

Our post-IC are

$$\begin{array}{lll} x(0^+) &=& x(0^-) & (\text{no jump in } x) \\ x'(0^+) &=& x'(0^-) & (\text{no jump in } x') \\ x''(0^+) &=& x''(0^-) + 5/a & (\text{jump of 5 in } ax'') \end{array}$$

4 Generalized derivatives

A jump discontinuity causes the derivative to have an impulse. The magnitude of the impulse is the size of the jump.

Example 2. Compute the generalized derivative of

5 Algebraic explanation of post-initial conditions

See Topic 20 notes. If there is time we will discuss this in class.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.