Day 44, F 4/12/2024

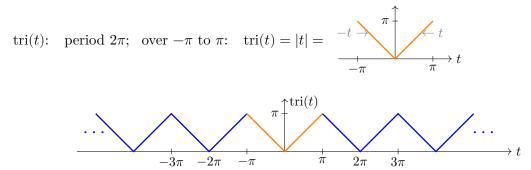
Topic 21: Fourier series (day 2) Jeremy Orloff

1 Agenda

- Finish yesterday's notes
- Fourier series of tri(t)
- Fourier approximation applet
- Decay rate of coefficients heuristics

2 Standard triangle wave

(Also in yesterday's notes.)



Example 1. Compute the Fourier series of tri(t). Solution: Period = 2π , so $L = \pi \longrightarrow \frac{n\pi}{L} = n$.

$$\begin{split} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{tri}(t) \cos(nt) \, dt \quad (\text{need to split into cases}) \\ &= \frac{1}{\pi} \int_{-\pi}^{0} -t \, \cos(nt) \, dt + \frac{1}{\pi} \int_{0}^{\pi} t \, \cos(nt) \, dt \\ &= \dots \text{ (by parts or table lookup)} \\ &= \begin{cases} -\frac{4}{n^2 \pi} & n \text{ odd} \\ 0 & n \text{ even.} \end{cases} \\ a_0 &= \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{tri}(t) \, dt = \frac{1}{\pi} \int_{-\pi}^{0} -t \, dt + \frac{1}{\pi} \int_{0}^{\pi} t \, dt = \pi. \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{tri}(t) \sin(nt) \, dt = \frac{1}{\pi} \int_{-\pi}^{0} -t \sin(nt) \, dt + \frac{1}{\pi} \int_{0}^{\pi} t \, \sin(nt) \, dt = \dots = 0. \end{split}$$

So,
$$\operatorname{tri}(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}$$

Note: we could have computed a_0 as $\frac{1}{\pi} \cdot \operatorname{area}\left(\xrightarrow[-\pi]{} \stackrel{\pi}{\xrightarrow[-\pi]{}} t \right) = \pi$.

3 Fourier approximation applet

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html

4 Decay rates of coefficients (in Topic 22)

When a sequence goes to 0, we can talk about how fast it decays.

- 1/n goes to 0 as $n \to \infty$. We say it decays like 1/n.
- $1/n^2$ goes to 0 faster than 1/n. We say it decays like $1/n^2$.

We only care about the rough rate of decay. So we say 3/n decays like 1/n and $\frac{1}{n^2 + n}$ decays like $1/n^2$.

For series: the faster the coefficients decay, the faster the series converges.

Decay rate of Fourier coefficients

1. If f(t) has a jump, then at least one of a_n or b_n decay like 1/n. Example: sq(t).

2. If f(t) has a corner, then at least one of a_n or b_n decay like $1/n^2$. Example: tri(t).

3. If f(t) is smooth, then a_n , b_n decay like $1/n^3$ or faster. The smoother the function, the faster the decay.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.