Solutions Day 45, T 4/16/2024 Topic 22: Fourier series (continued) Jeremy Orloff

Note: There is a useful integral table on the last page.

Problem 1. Compute the Fourier series of tri(t), the standard period 2π triangle wave. Do this by computing the integrals for its coefficients.

Since $\operatorname{tri}(t)$ is even, $b_n = 0$. Using the doubling trick for even functions

$$a_n = \frac{2}{\pi} \int_0^{\pi} \underbrace{\operatorname{tri}(t)}_{t} \cos(nt) dt = \frac{2}{\pi} \underbrace{\begin{cases} -2/n^2 & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even}, n \neq 0 \end{cases}}_{a_0 = \frac{2}{\pi} \int_0^{\pi} \underbrace{\operatorname{tri}(t)}_{t} dt = \frac{2}{\pi} \cdot \frac{t^2}{2} \Big|_0^{\pi} = \pi.$$

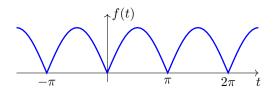
hary: $a_0 = \pi, \ a_n = \begin{cases} -4/\pi n^2 & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even}, n \neq 0 \end{cases}$. $\operatorname{tri}(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}.$

Problem 2. Let $f(t) = |\sin t|$ (rectified sine curve).

(a) Graph this.

Solution:

Summ



(b) Estimate the decay rate of its Fourier coefficients.

Solution: The graph has corners, so we will see a decay rate of $1/n^2$ in one of a_n or b_n . Since the function is even, $b_n = 0$. So it is a_n that will decay like $1/n^2$.

(c) Compute its Fourier series.

Solution: f(t) has period π , so $L = \pi/2$ and $\frac{n\pi}{L} = 2n$. Since f(t) is even, $b_n = 0$ and $a_n = \frac{2}{L} \int_0^L f(t) \cos\left(\frac{n\pi}{L}t\right) dt$. Using formula 7 in the integral table with a = 2n and b = 1 we get

$$\begin{aligned} a_n &= \frac{2}{\pi/2} \int_0^{\pi/2} \sin(t) \cos(2nt) \, dt = \frac{4}{\pi} \int_0^{\pi/2} \sin(t) \cos(2nt) \, dt \\ &= \frac{4}{\pi} \cdot \frac{1}{2} \left[\frac{-\cos((2n+1)t)}{2n+1} + \frac{\cos((2n-1)t)}{2n-1} \right]_0^{\pi/2} \end{aligned}$$

Since 2n + 1 and 2n - 1 are odd, $\cos((2n + 1)\pi/2) = 0$, $\cos((2n - 1)\pi/2) = 0$. So,

$$a_n = \frac{2}{\pi} \left[\frac{1}{2n+1} - \frac{1}{2n-1} \right] = -\frac{4}{\pi} \cdot \frac{1}{4n^2 - 1}.$$

$$\begin{aligned} a_0 &= \frac{4}{\pi} \int_0^{\pi/2} \sin t \, dt = \left. \frac{4}{\pi} (-\cos t) \right|_0^{\pi/2} = \frac{4}{\pi}.\\ \text{So, } f(t) &= \left. \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^\infty \frac{\cos(2nt)}{4n^2 - 1}. \end{aligned}$$

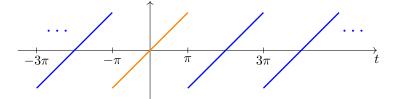
(d) Confirm your answer to Part (b).

Solution: Yes, the coefficients a_n decay like $1/n^2$.

Problem 3. Say whether each of the following functions is even, odd or neither. (a) $t^2 \sin(3t)$

Solution: Even \cdot odd = odd. (b) $t^2 \sin(3t) + t^2 \cos(3t)$ Solution: Odd + even = neither. (c) e^{-t} Solution: Neither

(d) $t \sin(8t)$ Solution: Odd \cdot odd = even (e) f(t) has period 2. $f(t) = e^{-t^2}$ for $0 \le t \le 2$. Solution: Neither \dots (f) f(t) has period 2π ; $f(t) = 2\pi t$ for $-\pi < t < \pi$ Solution: Odd

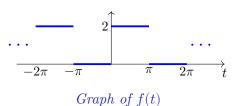


Problem 4. Let $f(t) = e^{\sin t}$. What is the period of f(t)? Estimate the decay rate of its coefficients.

Solution: Since sin t has period 2π , so does f(t). Since f(t) has derivatives of all order, the decay rate of its coefficients is really fast –faster than $\frac{1}{n^k}$ for any k.

I graphed f(t) and its Fourier series out to n = 4. The match was perfect. Computing numerically, $a_5 \approx -6.88 \times 10^{-11}$ and $b_5 = 5.4 \times 10^{-4}$.

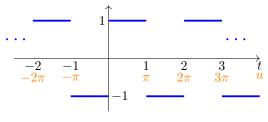
Problem 5. If didn't do this last class: Let f(t) = 1 + sq(t)



Find the Fourier series.

Solution: See solutions for previous class.

Problem 6. If didn't do this last class: Let g(t) have period 2 and $g(t) = \begin{cases} -1 & \text{for } -1 < t < 0 \\ 1 & \text{for } 0 < t < 1. \end{cases}$



Graph of g(t)

Find the Fourier series for g(t).

Solution: See solutions for previous class.

Integrals (for n a positive integer)

$$\begin{aligned} 1. \ \int t\sin(\omega t) \, dt &= \frac{-t\cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}. \\ 2. \ \int t\cos(\omega t) \, dt &= \frac{t\sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}. \\ 2. \ \int t\cos(\omega t) \, dt &= \frac{t\sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}. \\ 2' \cdot \int_0^\pi t\cos(nt) \, dt &= \begin{cases} \frac{-2}{n^2} & for \ n \ odd \\ 0 & for \ n \neq 0 \ even \end{cases} \\ 3. \ \int t^2 \sin(\omega t) \, dt &= \frac{-t^2\cos(\omega t)}{\omega} + \frac{2t\sin(\omega t)}{\omega^2} + \frac{2\cos(\omega t)}{\omega^3}. \\ 3' \cdot \int_0^\pi t^2\sin(nt) \, dt &= \begin{cases} \frac{\pi^2}{n} - \frac{4}{n^3} & for \ n \ odd \\ -\frac{\pi^2}{n} & for \ n \neq 0 \ even \end{cases} \\ 4. \ \int t^2\cos(\omega t) \, dt &= \frac{t^2\sin(\omega t)}{\omega} + \frac{2t\cos(\omega t)}{\omega^2} - \frac{2\sin(\omega t)}{\omega^3}. \\ 4' \cdot \int_0^\pi t^2\cos(nt) \, dt &= \frac{2\pi(-1)^n}{n^2} \end{aligned} \\ 1J \ a \neq b \\ 5. \ \int \cos(at)\cos(bt) \, dt &= \frac{1}{2} \left[\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right] \\ 6. \ \int \sin(at)\sin(bt) \, dt &= \frac{1}{2} \left[-\frac{\sin((a+b)t)}{a+b} + \frac{\cos((a-b)t)}{a-b} \right] \\ 7. \ \int \cos(at)\cos(at) \, dt &= \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right] \\ 9. \ \int \sin(at)\sin(at) \, dt &= \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right] \\ 10. \ \int \sin(at)\cos(at) \, dt &= -\frac{\cos(2at)}{4a} \end{aligned}$$

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.