Solutions Day 50, T 4/23/2024 Topic 25: PDES (2 days) Jeremy Orloff

Problem 1. Consider the heat equation with boundary conditions:

PDE: $u_t = 3u_{xx}, \quad 0 \le x \le 1, \quad t \ge 0$

BC: u(0,t) = 0, u(1,t) = 0

(a) Find all the separated solutions to the PDE.

Solution: Method of optimism (Fourier separation of variables): Try u(x, t) = X(x)T(t).

 $\label{eq:plug-in:} \begin{array}{ll} \mathrm{Plug\ in:} & u_t = 3u_{xx} & \Rightarrow X(x)T'(t) = 3X''(x)T(t). \end{array}$

Separate variables: $\frac{T'(t)}{3T(t)} = \frac{X''(x)}{X(x)} \underbrace{\stackrel{\text{function of } t = \text{ function of } x}_{= \text{ constant}} = \underbrace{\stackrel{\text{convention - use it!}}_{-\lambda}}_{-\lambda}$.

Algebra: $T' = -3\lambda T$, $X'' = -\lambda X$, λ any constant (same in both equations). So we have the two DEs:

$$X'' + \lambda X = 0, \qquad T' + 3\lambda T = 0.$$

The characteristic roots depend on the cases: $\lambda > 0$, $\lambda = 0$, $\lambda < 0$. We go through the cases one at a time.

Case
$$\lambda > 0$$
.

$$\begin{array}{ll} X'' + \lambda X = 0 & \Rightarrow \mbox{ roots } r = \pm i\sqrt{\lambda} & \Rightarrow X(x) = a\cos(\sqrt{\lambda}x) + b\sin(\sqrt{\lambda}x). \\ T' + 3\lambda T = 0 & \Rightarrow \mbox{ roots } r = -3\lambda & \Rightarrow T(t) = c \, e^{-3\lambda t}. \\ \mbox{Thus, } u(x,t) = X(x)T(t) = \left(a\cos(\sqrt{\lambda}x) + b\sin(\sqrt{\lambda}x)\right)e^{-3\lambda t}. \quad (\mbox{Dropped } c \ -it's \ redundant.) \end{array}$$

$$\begin{array}{ll} \underline{\text{Case } \lambda = 0}.\\ X'' = 0 & \Rightarrow X(x) = ax + b.\\ T' = 0 & \Rightarrow T = c.\\ \text{Thus, } u(x,t) = X(x)T(t) = a + bx. \quad (\text{Dropped } c \text{ -it's redundant.}) \end{array}$$

$\underline{\text{Case } \lambda < 0}.$

0

 \sim

$$\begin{split} X'' + \lambda X &= 0 \quad \Rightarrow \text{ roots } r = \pm \sqrt{-\lambda} \text{ (these are real)} \quad \Rightarrow X(x) = a e^{\sqrt{-\lambda}x} + b e^{-\sqrt{-\lambda}x}.\\ T + 3\lambda T &= 0 \quad \Rightarrow T(t) = c e^{-3\lambda t}. \quad (\text{Same as case } \lambda > 0.)\\ \text{Thus, } u(x,t) &= X(x)T(t) = \left(a e^{\sqrt{-\lambda}x} + b e^{-\sqrt{-\lambda}x}\right) e^{-3\lambda t}. \quad (\text{Dropped } c \text{ -it's redundant}) \end{split}$$

Lots of separated solutions!

(b) Find all the modal solutions, i.e., separated solutions to the PDE also satisfying the boundary conditions.

Solution: Modal solutions = separated solutions that match the boundary conditions.

Checking the boundary conditions: For a separated solution u(x,t) = X(x)T(t), the boundary condition u(0,t) = X(0)T(t) = 0 becomes

$$X(0)T(t) = 0 \quad \longrightarrow X(0) = 0 \text{ or } T(t) = 0.$$

If T(t) = 0, then u(x,t) = 0, i.e., u(x,t) is the trivial solution. Since we are looking for nontrivial solutions, we need X(0) = 0.

Likewise, the boundary condition u(1,t) = 0 requires X(1) = 0 for a nontrivial solution. In summary, when checking the BC, we can ignore T(t).

Case $\lambda > 0$: We have $X(x) = a \cos(\sqrt{\lambda} x) + b \sin(\sqrt{\lambda} x)$.

The BC are X(0) = a = 0, $X(1) = a\cos(\sqrt{\lambda}) + b\sin(\sqrt{\lambda}) = 0$.

Since a = 0, the second condition becomes $b\sin(\sqrt{\lambda}) = 0 \implies b = 0$ or $\sin(\sqrt{\lambda}) = 0$.

If b = 0, then X(x) = 0, i.e., we have a trivial solution.

If $\sin(\sqrt{\lambda}) = 0$, then $\sqrt{\lambda} = \pi, 2\pi, 3\pi, \dots$

We've found the following modal solutions when $\lambda > 0$ $(T(t) = ce^{-3\lambda t} = ce^{-3n^2\pi^2 t})$:

$$u_n(x,t) = b_n \sin(n\pi x) \, e^{-3n^2 \pi^2 t}, \qquad \text{where}, n = 1, \, 2, \, 3, \, .. \label{eq:un}$$

(We use the index n to distinguish the modal solutions from each other.)

<u>Case $\lambda = 0$ </u>: We have X(x) = a + bx.

The BC are X(0) = a = 0, X(1) = a + b = 0.

The only solution is a = 0, b = 0, i.e., there are only trivial solutions in this case.

 $\underline{(} \text{Case } \lambda < 0) \text{:} \quad \text{We have } u(x,t) = (ae^{\sqrt{-\lambda}\,x} + be^{-\sqrt{-\lambda}\,x}).$

It is not hard to check that this case has only trivial solutions that match the BC.

In fact, for all problems, the case $\lambda < 0$ will only have trivial solutions matching the BC. So, in future problems, we will ignore this case.

(c) Give the general solution to the PDE which also satisfies the BC.

Solution: Since both the PDE and BC are homogeneous, the general solution to the PDE and BC is

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} b_n \sin(n\pi x) e^{-3n^2 \pi^2 t}.$$

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.